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Abstract—In this paper, we present two spiking agents that
autonomously learn to control a robotic arm with three degrees
of freedom. Its objective is to provide joint commands that will
move the effector in a desired spatial direction, given the joint
configuration of the arm and the target position. The present
work is based on supervised learning with spikes using back-
propagation for training and using an architecture that starts
with an encoding layer, then fully connected linear layers with
possibly IF layers between them, and that ends with a decoding
layer. The trained spiking neural network was successfully tested
on a HoLLiE robotic arm run on the Neurorobotics Platform.

Index Terms—spiking neural network, reinforcement learning,
robotic arm, robotic reaching task, neurorobotics platform

I. INTRODUCTION

Reinforcement learning (RL), one of the most popular
research areas in the context of machine learning, effectively
addresses various problems and challenges in artificial in-
telligence. It has led to a wide range of exciting advances
in various fields, such as robot control, which has become
one of the research hot spots in the world. In general, RL
methods have made significant progress recently for robotic
applications due to their computational power, state-of-the-
art algorithms, and large-scale data sets. However, in robot
research, data plays an important role in decision making and
learning evaluation. The scale of the action and state space
increases exponentially with the increase in the number of
features for RL tasks, leading to a dimensional disaster. More
data and computation are required to explore the states and
actions, and thus the computational and energy consumption
generated by the learning robot increases exponentially, which
is not sustainable development. Therefore, bio-inspired learn-
ing is an interesting new perspective that promises to solve this
specific challenge in robotic applications as the computation
effort is reduced. [1]]

Spiking neural networks (SNN) is a bio-inspired approach
modelled after information processing, where asynchronous
sparse binary signals are communicated and processed in a
highly parallelized fashion. SNNs on neuromorphic hardware
exhibit advantageous properties of low power consumption
and event-driven information processing. This makes them
appealing candidates for the cost-effective deployment of deep
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neural networks. SNNs applied on purely event-based tasks are
not only inherently energy-efficient but could potentially har-
ness the rich temporal dynamics of the real world better than
frame-based approaches, in which time steps are artificially
introduced through sensor or processing components. Thus,
SNNs seem particularly suitable for robotic tasks. [2]

The rest of the article is organized as follows, in section
we present related work on the reaching task in NRP with
SNN. Section [[II provides a brief overview of the necessary
background and methodology, followed in section[[V]by a run-
through of the experimental setup before reporting our results
in section [V] and we finally conclude in section [VI| with a few
insights.

II. RELATED WORK

The focus of this study is to tackle the reaching task in the
NRP with the SNN. In this task, we ask the robot effector
to move between two points in space to reach a target. The
problem that arises, however, is that although the task is
inherently modeled in Cartesian coordinates, the robot can
only control its arm through the motors and perform the task in
joint angles space. The computation of the joint coordinates
that result in a desired spatial position of the end effector
is called inverse kinematics: it is typically a non-trivial task
that becomes even more difficult when challenged with many
degrees of freedom. In this paper, we train a 6 DoF HoLLiE
robotic arm only on 3DoFs, which is a common reduction in
most papers on reaching tasks that employ SNN, such as in
Carillo et al. [3]] working only on 2 DoFs and in Bouganis and
Shanahan [4] where the 7 DoF iCub arm is trained on only 4
DoFs.

A straightforward way to move the end effector to its
target position can be obtained by considering each joint
independently, and incrementing its angle accordingly towards
its final value at the target arm configuration; thus we can
directly output the joint angles that result in the desired spatial
position of the end effector. In this paper, we are taking this
approach and considering that giving the final joint angles as
the output of the agent to achieve the task is enough; however,
this view is not universal; for instance, another popular method
[S] consists of not directly computing the joint angles that
result in the desired spatial position of the end effector; but



using small steps to the target position and computing the joint
velocities at each step to move the end effector in the desired
spatial direction.

Different strategies for learning deep SNNs have been
developed in recent years: the present work is based on
supervised learning with spikes using backpropagation to train
deep SNNs. The emphasis in this work is not on biological
plausibility. However, biological plausibility is at the core of
other approaches using local learning. Again, in Bouganis
and Shanahan [4]], also addressing the reaching task, a feed-
forward network of individual neurons using spike-timing-
dependent plasticity (STDP) is architected, making the change
in synaptic weights biologically plausible.

ITII. BACKGROUND AND METHODOLOGY
A. Reinforcement Learning and Algorithms

1) RL: A reinforcement learning agent aims to learn the
optimal way to perform a task through repeated interactions
with its environment [6]. To achieve this, the agent needs to
assess the long-term value of the actions it undertakes.

RL algorithms can be categorized into several types, such
as model-based algorithms or policy-gradient algorithms. In
this paper, we focus on the Actor-Critic (AC) category which
estimates the value function by solving . = argmin(vg(s) —

0

©(s))? to obtain a value function as close as possible to
the actual value function, and use it to predict future re-
wards 7 (s, a ). It then takes the gradient of objective
0, = argmaxFE, ., (- >, 7' (s¢, a¢)] to improve the policy

in order for the resulting policy to maximize the expected
value of future rewards where the expectation is over the
sequence 7 of future actions and states, distributed according
the probability pe(7)).

2) Advantage Actor-Critic: A standard policy-based model-
free method updates the parameters of policy function. One
example of such a method is REINFORCE [12]. In order
to reduce the high variance in policy-gradient, one of the
methods used is subtracting the cumulative reward by a base-
line function. Furthermore, an example of baseline function is
advantage value which refers to comparing an action to the
general average action [13]. Additionally, the A2C method is
a synchronous version of A3C.

3) Twin Delayed DDPG: DDPG can be unstable and heav-
ily reliant on hyperparameters because of the overestimation
of Q values by the value network. [14]. The overestimation
accumulates through the Bellman equation over timesteps
and causes unavoidable errors. What TD3 brings are three
essential steps; using two critic networks, delayed updates for
the actor-network and action noise regularization. Using two
critic networks avoids abnormally high action values. Delayed
updates for the actor-network provides more stability on action
output. Lastly, the additional noise regularization avoids high
variance in target values when updating the critic networks.

B. Reaching task

The reaching task is an essential part of robotic manipu-
lation that requires the end effector to reach the target while

satisfying physical constraints. In this paper the reaching task
is achieved successfully once the center of the end effector is
reasonably close to a cylinder placed at a random position on
a table. We can formulate the reaching task as a MDP process
with the definitions of state, action, goal, and reward.

State: It contains the effector position (3 dimensions), the
cylinder position (3 dimensions), and all joint angles (6
dimensions)
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Action: We consider the new joints angles as the action. In
addition, the calculated final actions are limited by the joint
limits. Within our configuration, we only use the first 3 joint
angles, thus we set the upper and lower limits of the last 3
joint angles to 0.
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Goal: Based on these joint angles, defining the result of the
forward kinematics (end effector position) in Cartesian space
as the target can guarantee an attainable target position.

high =

goal = [eey, eey, ee;]

Reward: The design of the reward function is a critical com-
ponent of successful RL. We trained implemented algorithms
on two types of reward: dense and sparse reward functions, as
both are commonly used for reaching tasks. Accordingly, we
give the two definitions as follows:

For the dense reward, the reward is given as a function of
the Euclidean distance between the end effector and the goal
pose. If the position distance dist(p) is less than the required
accuracy e, it is considered a successful action and the payoff is
set to a > 0 . Else, the reward is set to penalize the Euclidean
distance between the end-effector and the target position

e < dist(p)

a
T =
{ dist(ee, goal ) e > dist(ee, goal)

For the sparse reward condition, a successful movement
is rewarded with @ > 0, otherwise, a punishment p;(< 0)
is given for energy consumption. In addition, if the robot
performs a physically impossible movement, such as crossing
the table, it is also punished by p2(< 0).

a e <dist(ee, goal)
r=4qp €>dist(ee, goal)
p2  constraint violated

C. SNN, encoding and decoding [7|]

1) SNN [8)]: A neuron in a spiking neural network SNN
can be viewed as a neuron in a recurrent neural network RNN:
the input being the voltage increment, the hidden state bieng
the membrane voltage, and the output being a spike. These
spike neurons are Markovian: the output at the current time is



perfectly defined by the input at that time and by the state of
the neuron itself.

WE can use three discrete equations —— Charge, Discharge,
Reset —— to describe any discrete spiking neuron:

fV(t—=1),X(t))
(t) =g (H(t) Vihreshold )
H(t) ’ (1 - S( )) + Vieset

O (H(t) —
-S(1)

‘/threshold )

where V (t) is the membrane voltage of the neuron; X (¢) is the
voltage increment; H (t) is the hidden state of the neuron and
f(V(t—1),X(t)) is the state update equation of the neuron.

The updating equation will vary for different neurons.
For example, for a LIF neuron, the corresponding difference
equations are:

Tm(V(t) —

The corresponding Charge equation is

V(t71)+i (-(V(t-1) -

FV(t-1), X (1) = ~

In the discharge equation, S(t) is a spike triggered by a
neuron. g(z) = ©(x) is a step function called the spike
function. The output of the spiking function is O if a spike
is not triggered at the current time or 1 when a spike is fired,
it is defined as follows:

1 >
o) = x>0
0, z<0

Reset means the reset process of the voltage: when a spike
is fired, the voltage is reset to Vi ; If no spike is fired, the
voltage remains unchanged.

The RNN uses differentiable nonlinear step functions, such
as the tanh function. However, the SNN spiking function
g(x) = O(z) is not differentiable; thus, contrary to RNN,
SNN cannot be directly trained by gradient descent and back-
propagation. To overcome this issue, we can use a function
o(z) that is very similar to g(z) = ©(x), but differentiable to
replace it.

The core idea of this method is: when forwarding, use
g(x) = ©(x), the output of the neuron is 0 and 1 , and our
network is still an SNN; when back-propagating, the gradient
of the surrogate gradient function ¢'(x) = o¢’(x) is used to
replace the gradient of the spiking function.

We clarify that we have 3 units of time in this work. An
episode is a sequence of states, actions and rewards, which
ends with a terminal state. An epoch is a forward and a
backward passage of the agent. An SNNstep, which we will
refer to as timestep, is a unit of time in which we can have
up to one spike.

Vies) + X (0)

2) Encoding [9] [10]]: The two most common approaches
to encoding the input of spiking neural networks are both bio-
inspired: rate encoding and time encoding, respectively called
the “stateless encoder” and the “stateful encoder”. Stateless
encoder because it has no hidden states within it, and the
spikes spike[t] are encoded just from the input data z[t] at
time step ¢, the higher the input, the larger the probability to
have a spike ; and stateful encoder because it will encode the
input sequence X containing the data of 7' time steps into a
spike at the first time forward, and will output spike[t%T)
at the ¢-th step call, we get only a single spike for the T
time steps and the higher the input, the earlier the spike. Two
stateless encoders have been implemented and fully tested,
they are explained in

3) Decoding [I1]: Typically, in deep Q-learning, the neural
network acts as the Q-function, whose output must be con-
tinuous values. Therefore, the last layer of the SNN cannot
directly use the output spikes to represent the Q function as
0 and 1, otherwise it leads to really poor performance. There
are several methods to make the outputs of SNNs continuous
values and the one used is explained in [[V-B]

IV. EXPERIMENTAL SETUP
. Simulation Environment and Deployment

The RL algorithms are commonly trained in a simulation
environment. In this regard, we used Neurorobotics Platform
NRP which provides scalable simulation platform with
reproducibility and synchronization for models in a common
simulation environment. Addtionally, In its backend, NRP
uses Gazebo as the simulator and provides a control interface
which benefits from Robot Operating System ROS. From

Fig. 1.

Reaching task simulation model

variety of simulation models, we used 6 DoF HoLLiE robot
arm model running on a NRP docker container. In order to
give instructions to NRP simulation, we used Google Remote
Procedure Call GRPC system between NRP backend and the
application which runs an instance of training.

B. Architecture

All networks architecture follows the same pattern. We start
with an encoding layer that transforms the input of size n into



a spike train of size n over T timesteps, this spike train can
be seen as a vector of size n where each element is a vector
of size T with elements either 0 or 1. The encoding layer is
followed by fully connected linear layers that are regular feed
forward networks with n neurons for the first linear layer and
m neurons for the last one with possibly IF layers in between.
Finally, these linear layers are followed by a decoding layer
of size m which converts each vector of size T' into a single
number.

1) Encoding: We focused on 2 different encodings: Poisson
encoder and linear+IF Node encoder.

The Poisson encoder is a stateless encoder. It converts the
input data x into a spike train of the same shape, which con-
forms to a Poisson process, i.e., the number of spikes during
a certain period follows a Poisson distribution. Consequently,
in order to realize Poisson encoding, we normalize the input
x element-wise to [0, 1] and we set the firing probability on
each dimention to the value of the normalized element x;. The
mean number of spikes during 7" timesteps is therefore T'x z[i]
for the ith element of the output of the encoding layer.

The linear encoder+IF node is more practical because the
input does not need to be normalized. Indeed, we first feed
the input x over 7' time steps to a linear layer, this layer is
connected to an IF node of the same size; an IF node being
a node with the same equation as LIF but without the
decay term. Since there is a spike as soon as the IF input
is greater than 1, the linear layer modifies its weight so as
to have an output with values less than 1 to send to the IF
nodes. Indeed, for an input greater than or equal to 1, the
IF node spikes at each time step and we obtain the vector
11 1] and a good encoding must lead to different
results for different inputs of the agent. The IF node will then,
over T time steps, transform the pseudo-normalized input into
a spike train, with a higher spike rate for a higher input value.

2) Decoding: A traditional method is to make the final
output of the network the firing rate of each neuron in the
output layer. However, using the firing rate as a Q-function
don’t lead to satisfactory performance because it does not cap-
ture enough computational depth: indeed, after T simulation
steps, the possible firing rates are [0, 1/T, 2/T, ... 1], which is
not sufficient to represent a reliable Q-function. In this paper,
we apply a novel scheme for SNNs to produce floating point
numbers. Specifically, a LIF neuron’s firing threshold is set to
infinity, so that it does not fire at all, and we adopt its final
membrane potential to represent the Q function.

C. Parameters

In the implementation we are provided with several external
parameters, the following are the most relevant and application
specific ones.

1) Goal proximity: For robot reaching tasks, the different
levels of goal proximity between the robot end effector and the
target make the problem more or less difficult. The question is
how to choose it: a poorly chosen goal can lead the learning
process in the wrong direction and make the training ineffi-
cient. Therefore, in this study, the required distance threshold

from the target is an important parameter: it should be suitably
high to enable the robot to obtain rewards for acquiring the
basic skills needed for the task, while being low enough to
achieve a satisfactory result. An interesting way to do this is
to start with a high threshold and automatically decrease it
after reaching a certain accuracy.

2) Rewarding strategy: The agent’s goal is to maximize its
rewards and it learns by adjusting its policy based on them:;
thus, this is an important aspect for training, hence we test
different a, pl and p2 for the reward functions described in
We also have an external parameter which is the goal
reward threshold to finish model training.

3) Start timesteps: Reinforcement learning algorithms use
replay buffers to store experience trajectories when executing
a policy in an environment, we therefore have to choose the
number of epochs to populate the replay buffer.

4) Max timesteps: The total number of epochs for training.

5) Tries per episode: The number of attempts allowed in
an episode to reach the goal.

6) T: The number of timesteps used to encode the input,
that is equivalent to the number of timesteps in an epoch.

V. EXPERIMENTS AND RESULTS

The main purpose of the experiments is to see how SNNs
perform in reaching task problems with different RL methods
in a given environment. Additionally, we used two different
base network architectures with a different number of layers
to infer whether the size of the network has an importance
on the given task. The different encoders at the beginning of
the networks provided a variety of differences when they are
referred again. the base networks design can be seen in figure

2

a*> b*>

Encoder
IF Neurons
Decoder

A Latent Layer*

Fig. 2. General network architecture of implementations. (a) corresponds to a
fully connected layer of size 15x128 for TD3 critic networks, 9x128 for both
A2C networks and TD3 actor network. (b) corresponds to a fully connected
layer of size 64x1 and 128x1 for larger and smaller architecture, respectively.
The number of IF neurons in a layer is defined by the number of output size of
its previous layer. Between two latent layers, there is another fully connected
layer of size 128x128 is implemented.

We denote that a fully connected layer and a IF node layer
form a spiking node layer. A general SNN contains spiking
node layers as the latent layers, an encoder at the beginning



and an output layer (Decoder) at the end of the network.
As the output layer, we used a non-spiking LIF node so the
accumulated membrane potential after time-steps will give the
network output.

The methods that we used require different network archi-
tectural designs such that TD3 contains two critic networks
and the actor of A2C contains a standard deviation and a
mean value output. The size of output and input tensors vary
according to the algorithm of the methods. The only major
difference is the actor of A2C splits into two parallel output
layers as shown in the figure.

The provided robot arm model by simulation platform, give
training possibility for six joints. However, we only trained
three joints in our experiments.

The contrasting network architecture implementations have
a different number of latent. In a larger architecture with
a linear+IF node encoder, the network is defined with one
latent layer. However, for a larger architecture with a Poisson
encoder, the number of latent layers are two. The reason
behind the scene is to have less number of non-linearity layers
so the network does not become more complex. Accordingly,
the number of latent layers for smaller network architecture is
zero and one for a network with linear+IF node encoder and
Poisson encoder, respectively.

During a general training run, both implemented RL algo-
rithms use a replay buffer. The replay buffer can be seen as
a memory in which agents hold the previous transition data.
For TD3 implementation, the replay buffer starts from a given
number of random observations in a simulation environment
without any training phase. Furthermore, the replay buffer is
crucial for the training procedure as the agent needs to learn
according to its previous transitions. For the TD3 algorithm,
we fetch a random batch of transitions from the replay buffer.
However, in A2C implementation, we used reversed sequential
transitions which are observed in an episode to train the agent.

In the experiments, we used the same values for certain
hyperparameters [[} In this regard, we played with hyperpa-
rameters; the number of timesteps used to encode the input,
the network architectures and encoders.
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Fig. 5. Graph of Successful Episodes

2 for T value, learning rate, discount and tries per-episode,
respectively. This makes the best model that we had. In order
to avoid collusion with the table surface, we added negative
rewarding if the end-effector collides the table surface. The
network use nearly the same architecture with general small
network architecture that is defined above. The only different
is the number of neurons in a layer is changed to 256 from
128 for latent layers.

TABLE 11
THE EXPERIMENT RESULTS FOR A2C AND TD3 ALGORITHMS WITH
DIFFERENT HYPERPARAMETERS

TABLE I
THE COMMON HYPERPARAMETERS OF EXPERIMENTS

Learning Rate 15e-5
Max Timestep 10000

Proximity 0.2

Discount 0.99

Tries per Episode 8
Start Time-step 2500
Batch Size 256

The table [II] show the success results and average distance
at the end of each training phase with normalized state and
action value inputs.

Addtionally, we used non-normalized state and action values
on a number of experiments with TD3 implementation. The
best success rate of the experiments was 0.7 and average
distance was 1.7. The used parameters are; 8, 3e-3, 0.95,

Method [ Encoder | Network [ T [ Success | Avg Distance
TD3 Poisson Small 8 0.1 3.952
TD3 Poisson Small 16 0.15 3.736
TD3 Poisson Large 8 0.2 3.979
TD3 Poisson Large 16 0.28 3.435
TD3 Linear+IF Small 4 0.04 4.002
TD3 Linear+IF Small 8 0.0 4.656
TD3 Linear+IF Large 4 0.17 4.329
TD3 Linear+IF Large 8 0.2 3.902
A2C Poisson Small 8 0.24 3.494
A2C Poisson Small 16 0.04 6.562
A2C Poisson Large 8 0.0 NA
A2C Poisson Large 16 0.04 NA
A2C Linear+IF Small 4 0.0 NA
A2C Linear+IF Small 8 0.28 3514
A2C Linear+IF Large 4 0.0 NA
A2C Linear+IF Large 8 0.0 NA




VI. DISCUSSION AND CONCLUSION

One of the main drawbacks of deep SNNs is that their accu-
racy on typical landmarks does not reach the same standards
as their NN counterparts. In addition, the learning algorithms
of SNNs make the direct application of established backprop-
agation techniques problematic. We believe that the results
achieved are not yet adequate, one of the issues is probably that
reinforcement learning already involves numerous parameters,
yet the SNN introduces an additional layer of complexity.
Indeed, the choice of the encoding and the number of steps
to encode an input has a strong influence on the results and
this influence differs between agents. For example, the highest
scoring agent TD3 had a Poisson encoder and a large network,
with an input encoded on 16 timesteps, while the highest
scoring A2C agent had none of these features in common,
it had a linear+IF encoder, a small architecture and an input
encoded on 8 timesteps. The performance of SNNs should be
considered as a proof of concept only [2]: Since SNNs are
a biological model, we expect them to be optimized only for
the most behaviorally relevant tasks, such as making decisions
based on continuous input instead of reaching an object whose
position changes randomly and without any rationale.
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