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1 Introduction

The aim of this project is to design a comprehensive way to model renewable energy sys-
tems so as to achieve a renewable energy production that meets all the energy needs of
selected European countries. There is no doubt that the objective is to remain realistic
from a budgetary optimization perspective, but also to avoid opposition from the popu-
lation. As the share of renewable energies in the energy system will rise and renewable
technologies will become more salient to the public, including public opinion in system
design decisions will be of increasing importance in the upcoming years. Moreover, to
examine interactions with a third objective dimension, another objective is to generate as
many employment opportunities as possible in the area of the production of green energy.

This report proceeds as follows. In Section 2, we give an overview of the related lit-
erature and outline our unique contribution in such research. In Section 3, we describe
the problem at hand in detail through a mathematical interpretation. While Section 4
presents the data used and certain choices that are made namely to assert the opposition
of the population, Section 5 sheds light on our methodology through theory-based expla-
nations based on the lectures. We present our results as well as our selected solution in
Section 6, Section 7 concludes.

2 Related literature

Our research project is closely linked to four strands of the literature. The first strand
investigates the optimal design of renewable energy systems minimizing the system costs
(see e.g., [1], [2], [3], and [4]). The second strand developed methodological tools for
solving multi-objective optimization problems (see e.g., [5], [6], [7]). [8] provides a survey
on the evolution of that research field. Recently, a third strand evolved that combines
both by applying multi-objective optimization methods to energy system design problems.
Several studies have already been carried out to locate plants of a specific technology in a
given region with respect to multiple criteria, e.g. for wind ([9], [10]) and solar farms ([11],
[12]). A few studies accommodated a broader set of technologies or a wider geographical
space. For instance, [13] optimized the distribution of wind and photovoltaic plants
across Italy in order to achieve a good trade-off between the total energy output and its
fluctuations. Meanwhile, [14] present pathways for an optimal European power system
accounting for environmental and economic goals. A fourth strand provides research
on the public opinion of energy production technologies (see, e.g. [15], [16], [17], and
[18]). This research is highly relevant for policymakers to facilitate the process of energy
transition. For instance, the European Commission itself conducts research in this field
to adapt policies accordingly [19], [20].

All in all, we remark steadily growing streams of literature concerning multi-objective
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energy system design and public opinion on energy sources. However, to the best of our
knowledge, there is no study that links both with each other by incorporating public
opposition as a system objective itself. Yet, we see the need for such a comprehensive
system development in order to reach high shares of renewable technologies. We therefore
develop a model that may serve as a starting point for a new strand of literature filling
this research gap.

3 Problem definition

We aim at identifying an optimal expansion strategy of the future European energy sys-
tem with respect to energy costs and public technology opposition.1 As this is a fairly new
approach, we restrict the problem to a few basic features. Namely, the energy system con-
figuration must account for the demand in each country, the losses that arise from energy
transportation between countries and for the capacities already installed in each country.
This simple setup allows us to keep track of the mechanisms at work. Nevertheless, our
framework is easily extendable to more sophisticated features.

In the following, we present the mathematical formulation of our problem. Table 1
contains information on the symbols used for notation.

The objective functions are

f1(x) =
∑
i∈C

∑
t∈T

ci,t · xi,t (1)

f2(x) =
∑
i∈C

popi

∑
t∈T

oppi,t · xi,t (2)

f3(x) =
∑
i∈C

∑
t∈T

vt · xi,t (3)

where (1) describes the yearly costs of energy production from newly built sites, (2) reflects
the weighted public opposition against energy policy x, and (3) includes the vacancies
created. Note that we search for a minimum of f1 and f2 while maximizing f3. The

1Note that we will only include technologies that are commonly described as carbon-free. Therefore,
the goal of zero-carbon emissions is implicitly guaranteed.
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Table 1: Symbols used for the mathematical problem

Symbol Description

Sets
C Countries
T Technologies

Parameters
ci,t LCOEa of energy produced in country i ∈ C by technology t ∈ T
oppi,t Opposition against newly built plants of technology t ∈ T in country i ∈ C
vt Jobs created (vacancies) by technology t ∈ T
Di Yearly electrictity energy demand in country i ∈ C
Sinitial

i,t Currently, yearly produced energy in country i ∈ C using technology t ∈ T
disti,j Distance between country i and j, with i, j ∈ C
ρ Energy losses per distance transported
popi Relative population size of country i ∈ C
Mb Big-M for deactivating no export restriction if zi,j = 1

Decision variables
xi,t Added yearly energy production in country c ∈ C by technology t ∈ T
yi,j

c Yearly energy transportation from country i to j, with i, j ∈ C
zi,j Indicates whether country i exports energy to country j, with i, j ∈ C
a LCOE: Levelized cost of energy.
b We generously set M =

∑
i∈C Di. One could also think of tighter, country-specific choices of M to

account for cross-country line capacities.
c Note that if i = j, yi,j captures the energy produced in country i ∈ C for domestic use.
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constraints can be written as

∑
t∈T

(
xi,t + Sinitial

i,t

)
=
∑
j∈C

yi,j ∀i ∈ C (4)

∑
i∈C

yi,j ·
(

1
1 + ρ

)disti,j

= Dj ∀j ∈ C (5)

yi,j ≤M · zi,j ∀i, j ∈ C (6)

zi,j + zj,i ≤ 1 ∀i, j ∈ C, i 6= j (7)

xi,t ≥ 0 ∀i ∈ C, t ∈ T (8)

yi,j ≥ 0 ∀i, j ∈ C (9)

zi,j ∈ {0, 1} ∀i, j ∈ C (10)

where (4) ensures that a country distributes exactly as much energy among all countries
as it produces, (5) guarantees a sufficient production given the demand2, (6) forces energy
transportation from country i to j to be zero if the export in this direction is not activated,
and (7) guarantees that energy exchange between two countries follow only one sense. The
non-negativity constraints in (8) prevent us from ignoring existing production capacities
whereas (9) prohibits negative energy transportation. (10) is the binary constraint on z.

4 Data

The main issue for the data retrieval was to identify an optimal measure for public op-
position on energy technologies. Yet, there is not much literature on it, especially for a
cross-country and cross-technology comparison. Trade-offs had to be made, the limitation
being to use as few different scientific papers as possible to ensure uniform and consistent
measurement. Finally, we relied on a paper [16] establishing the preferences of the Por-
tuguese on biomass, wind, solar and hydro energy which we assumed to be the average
for all European countries.3 Nevertheless, nuclear energy enabled us to have a difference
between countries, as we found the opposition to nuclear energy for all EU countries [17].4

Data on the other variables has been easier to find. An effort has been made to narrow
down the number of different resources and ensure consistency in terms of timeline. For
the most part, our data is from the year 2018. We show data for objective function
parameters in Table 2 (cost), Table 3 (opposition), and Table 4 (Jobs). Other data can
be found in the Appendix to prevent overcrowding the report.

2This restriction is noted as strict equality to keep the single-objective problems max f3(x) bounded.
3Hence, we could not include cross-country differences for the public opinion on biomass, wind, solar

and hydro yet. Conducting a similar research as [16] for all European countries would enable us to include
country differences and to improve the results of our model.

4For Switzerland, we took the average of the opposition in the other countries considered.
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Table 2: Levelized cost of energy in mio. $/GWh

PV Wind Biomass Hydro Nuclear

France 0.03394 0.05608 0.07000 0.05400 0.03065

Italy 0.05809 0.05287 0.07596 0.06141 0.05000

Switzerland 0.09000 0.08000 0.07000 0.05000 0.029600

Austria 0.10800 0.07635 0.07000 0.05433 0.05000

Germany 0.09000 0.07000 0.07000 0.05700 0.05000

LCOE was obtained from the sources [21], [22], and [23]. When a value wasn’t
available we approximated it by choosing the EU average.

Table 3: Opposition in % of total population

PV Wind Biomass Hydro Nuclear

France 2 4 6 12 38.8

Italy 2 4 6 12 32.4

Switzerland 2 4 6 12 47.9

Austria 2 4 6 12 67.8

Germany 2 4 6 12 52.9

Source: [16], [17]

Table 4: Job-creation estimation

Technology Yearly jobs per GWh

PV 0.87
Wind 0.17
Biomass 0.21
Hydro 0.27
Nuclear 0.14

Source: [24]
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5 Methodology

Solving the problem characterized in Section 3 poses challenges to the mathematical op-
timizer and the decision maker because it involves multiple and potentially contradicting
objectives. For instance, the cheapest energy technology is likely not to be the least
opposed one in each country. Therefore, in general there is no unique solution to multi-
objective optimization problems. Instead, one might find several solutions that do not
dominate each other along all objective dimensions. This complicates both the search
for optimal solutions and the process of picking one of them. To address this issue, the
literature has developed a rich set of techniques, from which we present and apply those
introduced in [25].

5.1 Definitions

Following the notation of [25], a multi-objective, mixed-integer linear program can be
written as

min{f1, f2, ..., fn} (11)

x ∈ X (12)

with the non-empty and bounded feasible set X and (contradicting) objectives fi(x). For
multi-objective optimization, it is useful not only to consider the decision variable space
but also the objective space Rn. The objective vectors (z1 z2 ... zn)> with zi = fi(x) and
x ∈ X are elements of this objective space. We can then define the feasible objective
region F = f(X) as the image of the feasible set X. Following [5] and [25], we define the
Pareto optimal solution and the weak Pareto optimal solution as follows:

Definition 1 (Pareto optimality) A decision vector x∗ ∈ X is Pareto optimal if there
does not exist another vector x ∈ X such that fi(x) ≤ fi(x∗) for all i = 1, ..., n and
fj(x) < fj(x∗) for at least one index j.

Definition 2 (Weak Pareto optimality) A solution vector x∗ ∈ X is weakly Pareto
optimal if there does not exist another vector x ∈ X such that fi(x) < fi(x∗) for all
i = 1, ..., n.

5.2 Preprocessing

In order to facilitate the calculations and the comparison of the results, we transform all
objectives fi to minimization problems where necessary5 and adapt their ranges to values
that are approximately in the interval [1, 10]. We do this by solving the single-objective

5That is, we multiply fi by −1 if it is originally supposed to be maximized, i.e. f3.
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optimization problems to get lower bounds. The obtained optimal points of each problem
can then be plugged into the other objective functions, respectively, to calculate their
approximate upper bounds. Using the lower and the approximate upper bounds we are
able to compute the constants Ci and Ki that normalize the objectives fnorm

i = fi+Ci

Ki
,

∀i = 1, ..., n.

5.3 A priori methods

A priori methods aim at reducing the complexity of the problem at hand by deciding in
advance about the prioritization of the the objectives.

Value function method The value function method relies on the assumption that
the decision maker is able to provide a utility function U(f1, ..., fn) with respect to the
different objectives fi. Then, the problem translates into a single objective problem

min
x
U [f1(x), f2(x), ..., fn(x)] (13)

x ∈ X (14)

However, the utility function u is often not available, as in our case. We therefore negclect
the value function method for our project.

Lexicographic method The lexicographic method requires a less restrictive assump-
tion on the abilities of the decision maker. We require them only to be able to order the
objectives in a strictly decreasing way. Then, we can start by solving the single-objective
problem for the most important objective. Subsequently, we solve for the optimal value
of the second important objective, additionally requiring to meet the optimal value of the
prior objective and so on and so forth. The lexicographic method is guaranteed to find a
Pareto optimal solution. In Section 6, we provide results of the lexicographic method for
all combinations of rankings.

5.4 A posteriori methods

In contrast to a priori methods, a posteriori methods try to find many non-dominated
solutions, from which the decision maker may pick one afterwards. Ideally, the mathe-
matical optimizer finds all Pareto optimal solutions, the so-called Pareto set, which is a
challenging task.

Weighting method The weighting method assigns weights wi to all respective objec-
tives fi, wi ≥ 0, ∑n

i=1 wi = 1, and optimizes the weighted sum of objectives ∑n
i=1 wifi.

The theory assures Pareto optimality of solutions for wi > 0, i = 1, ..., n. However, the
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weighting method does not guarantee to find all Pareto optimal solutions. In Section 6,
we present the results of our weighting method approaches for both the bi-objective cases
and for all objective functions.

ε-constraint method The ε-constraint method reduces the multi-objective problem
to a single-objective problem by picking one function for optimization and including the
others into the set of constraints, requiring them to meet a minimum quality ε. Mathe-
matically, it can be written as

min
x
fl (15)

fi(x) ≤ εi ∀i = 1, ...n, i 6= l (16)

x ∈ X (17)

In theory, using the ε-constraint method may yield every Pareto optimal solution. To
be Pareto optimal, the solution x∗ ∈ X must either be unique, or, for every l = 1, ..., n,
it must satisfy the constraints with εi = fi(x∗), for all i = 1, ..., n and i 6= l. Since
the uniqueness is difficult to prove, we pursue to meet the latter condition and provide
detailed results in Section 6.

6 Results

In this section, we provide a rigorous analysis of the problem at hand. First, we present
the single-objective results to get an idea of the objective values and the decision variables.
Next, we show our results of three chosen solution methods, namely the lexicographic,
the weighting and the ε-constraint method. Last, we pick one of the obtained solutions
and interpret the corresponding decision variable values.

6.1 Single-objective optimizations

Considering each objective separately, we can begin to identify if we have conflicting
objectives and also evaluate the optimal values of the objective functions and thereby
infer if there is a need for normalization.

We notice that the solutions are very different between the methods and moreover the
values of the objective functions are not in the same order of magnitude. We deduce that
trying to satisfy these three objectives will not be trivial and will require the normalization
of each objective function in order to give them equal importance.

8



Figure 1: Solution with cost minimization as the objective

Figure 2: Solution with opposition minimization as the objective

Figure 3: Solution with the employment maximization as the objective
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Figure 4: Lexicographic method results in the objective space, x= objf_cost, y= objf_opp
and z= objf_jobs

6.2 Lexicographic method

Since we have 3 objective functions there are 3!=6 ways to define preferences. Yet, the
6 cases only provide 4 distinct solutions. In fact, if the priority is based on the cost or
opposition of the inhabitants, the sequence in which the two remaining objectives are
defined is irrelevant. Furthermore, we notice that if the priority is on cost (red dot), the
value of opposition is 10 (the approximate maximum) and inversely if the priority is on
opposition (blue dot), the value of cost is maximum, regardless of whether the latter is in
second or third priority. The case of job creation is distinct, it does not clearly conflict
with either of these objectives. We thus have two distinct solutions according to the
different priorities (the two yellow dots). The exact objective values of the six problems
an be found in Appendix B, Table 8.
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6.3 Weighting method

We start our weighing method analysis with the bi-objective case. For all combinations
of objectives (Cost vs. Opposition, Cost vs. Jobs and Opposition vs. Jobs), we iterated
over the weights in 0.01 steps. Where required, we conducted an additional fine search
to obtain a greater variety of solutions. In particular, this procedure was needed for Cost
vs. Opposition and Cost vs. Jobs.6 Figures 5a-5c illustrate the set of solutions found. In
line with our findings from 6.2, we infer that opposition and jobs objectives don’t conflict
by much. The objectives of cost and the jobs seem also to be roughly compatible with
each other, we find that solutions close to the ideal solution vector (1, 1) are feasible.

In Figure 5d we depict the results for the optimization of the multi-objective problem
with three objectives. For facilitating the visualization, we represent the solutions on a
two-dimensional plot between cost and opposition and provide the job objective values
as labels of the data points. However, we conclude that conceiving all aspects of the
three-objective problem from this plot is difficult and that decision makers might prefer
bi-objective visualizations.

6.4 ε-constraint method

Figure 6 depicts the results from the ε-constraint method. Even though this method is
theoretically able to find all Pareto-optimal solutions, in practice we might miss some of
them because we can’t conduct the method for all possible ε. For this reason, the obtained
plots still might show sparse regions. However, they are much more complete than the
solutions from the weighting method and hence we obtain already a good characterization
of the problem at hand.

As an example, we examine the solution of the bi-objective problem Cost vs. Jobs
from Figure 6b. The Pareto front starts at the cost-optimal point (1, 10) where it begins
to fall steeply. That is, we can optimize the jobs easily while causing only a minor amount
of additional costs. This steep decline is followed by a short period of moderate gradients.
In this region, cost and jobs can be counterbalanced at similar scale. As we reach a job
objective of roughly 1.4, the Pareto front shows a very flat tail, meaning that a further
optimization of jobs comes with a stark increase in costs. The kinks typically reflect a
significant change in the decision variables. The values of the x-variables at the four kink
points documented in Figure 7 let us conclude that the characteristics of the Pareto Front
for Cost vs- Jobs are induced by choosing between nuclear and solar power technologies.

6See also the AMPL code provided.
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Figure 5: Pareto optimal points obtained by the weighting method.
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(a) Point (6.1, 1.0) (b) Point (2.1, 1.34)

(c) Point (1.75, 1.7) (d) Point (1.0, 10.0)

Figure 7: Decision variables x at the kinks of the Pareto Front from Figure 6b (Cost
vs. Jobs). The minimal costs are achieved by building solely nuclear power plants in
Switzerland, whereas the optimal jobs requires the full deployment of solar power. The
region of moderate gradients is characterized by a mixture of technologies and countries.

6.5 Solution selection

Now, we take the perspective of the decision maker. Being equipped with the analysis
above, we have to pick a policy assuming that no other factors play a role on optimal
energy system expansion and that we have full control on the future development.

From Section 6.1, we get a first idea of the magnitudes of the distinct objectives and
how they translate into the normalized scale. Section 6.2 suggests that the cost and
opposition minimization are the most conflicting objectives which is in line with our prior
expectations. In fact the jobs criterion seems to be partially linked to the other two
objectives. This rationale is also supported by the results from the weighting method
in Section 6.3. Additionally, we see that trying to conceive three objectives at once is
a challenging task for the decision maker, even with visual support. For these reasons,
we select a solution based on the bi-objective optimization problem between costs and
opposition. We stick with the solutions from the ε-constraint method because they offer
the most complete picture.

Since we can deal with moderate levels of opposition and rather want to minimize
costs at first place, we decide for the solution at the kink of the Pareto-Front in Figure 6a
with normalized values of 1.70 (Cost) and 3.725 (Opposition). We finally calculate the
detailed characterization of the solution, see Figure 8. From this, we can see that the
optimal policy x would consist of an enormous expansion of PV capacity in France,
supported by some biomass and nuclear power in Switzerland. This would also require
massive energy exports y from France to all other countries.

The results from our basic model is likely not to be a realistic path to carbon-free
energy autarky of the countries considered. For instance, France has probably neither
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Figure 8: Final solution selected

the area nor the power lines available for the huge amount of PV power production and
transportation. There are several reasons why our model fails to select a realistic solution
in this basic version. First, we didn’t include important determinants such as spacial
availability and power line capacity. Second, due to limited data on opposition, we had
to assume that the public opinion on solar, wind, biomass and hydro energy is equal in
all countries. From that perspective, it is reasonable that the optimal solution locates
nuclear power, the commonly most opposed but cheapest technology, in the smallest
country Switzerland which accounts only for 3.37 % of the total population. More precise
data could help by allowing for diversification according to country-specific preferences.

Nevertheless, we emphasize that, compared to the single-objective cost minimization,
the solution has totally changed. This suggests that including public opinion measures
into energy system decisions may be very important, opening new paths for a less opposed
energy system transition.

7 Conclusion

In our research project, we included a new objective dimension to energy system design
optimization, namely the public opinion measure opposition. This is important since
public opposing movements may pose problems to the expansion of the European energy
system, as already experienced by, e.g., the German wind energy sector [26]. As the
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share of renewable energies in the energy system rises, these technologies will become
more salient to the public. This is likely to increase the need for including public opinion
measures into system design decisions.

To this end, we pursued three approaches for multi-objective optimization from [25],
namely the lexicographic, the weighting and the ε-constraint method. We explored the
strengths and weaknesses of each approach and presented an exemplary solution selection
procedure. Moreover, we showed that the inclusion of public opposition criteria has
significant effects on the optimal energy system design which might be important to
consider for speeding up the transition of the European energy system.

However, our results suffer from strong model assumptions and limited data availability
on opposition. Hence there remain several challenges for future research. First, due to
difficult data retrieval, we did not include important restrictions, for instance a restriction
on the maximum production of each country. Second, we did not consider the stochastic
effects of renewable energy supply. Since the system design should be robust to rare
events, the integration of stochastic elements and an extensive robustness analysis would
be interesting. And third, due to a lack of data we assumed public opposition on biomass,
solar, wind and hydro technologies to be equal across countries. Gathering country- or
region-specific data for all members of the European energy grid might be crucial to the
reliability of the optimal solution.
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Appendix A Supplementary data

Table 5: Distance between countries in 1000km

France Italy Switzerland Austria Germany

France 0 1.214 0.552 1.101 0.92

Italy 1.214 0 0.984 0.879 1.297

Switzerland 0.552 0.984 0 0.605 0.602

Austria 1.101 0.879 0.605 0 0.608

Germany 0.92 1.297 0.602 0.608 0

Distances were approximated using Google Maps pedestrian navigation dis-
tances between two respective countries.

Table 6: Initial yearly production in GWh

PV Wind Biomass Hydro Nuclear

France 10569 28599 6132 70590 412942

Austria 1438 6030 4594 41216 0

Switzerland 1944 0 663 37802 25513

Germany 45784 109951 44717 24143 76005

Italy 22654 17716 16782 50503 0

Source: [27]

Table 7: Country-specific electricity demand and pop-
ulation

Country Electricity demand Population
[GWh] [million people]

France 518970 66,76
Austria 77544 8,822
Switzerland 67521 8,484
Germany 594423 82,79
Italy 333607 60,48

Source: [28], [29]. For the population measure, we relied on
the respective official sources from each country.
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Appendix B Supplementary results

Table 8: Detailed results for the lexicographic method

1. Cost 1. Cost 1. Opp 1. Opp 1. Jobs 1. Jobs
Priorities 2. Opp 2. Jobs 2. Cost 2. Jobs 2. Cost 2. Opp

3. Jobs 3. Opp 3. Jobs 3. Cost 3. Opp 3. Cost

Objective value Cost 1 1 10 10 5.67 6.36
Objective value Opp 10 10 1 1 3.74 3.73
Objective value Jobs 8.68 8.68 1.78 1.78 1 1
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