Plants vs.

Zombies:

Reinforcement learning to a tower defense game

Timothée Blondiaux, Lukas Frank, Hanady Gebran, Alexandre Perot
https://github.com/inf581-pvz-anonymous/pvz_rl

Abstract—We developed a Plants vs. Zombies game engine,
linked it to an OpenAl gym environment and used state-of-the
art Reinforcement Learning methods (policy gradient with and
without an actor critic module, Deep Q-Network and Double
Deep Q-Network) to successfully train agents to play the game.
We reported on the superiority of off-policy methods for this
environment and how hyperparameters and observation features
could be handled to improve the agent’s performances.

I. INTRODUCTION

Plants vs. Zombie (PvZ) is a single player tower-defense
game in which the player has to defend their home amid a
zombie apocalypse. To this end, they may locate special plants
in their garden to fight against attacking foes. This setup is well
suited to a Reinforcement Learning (RL) approach since it can
be stripped to a simple baseline while enabling the addition of
components (plant types, obstacles...) to increase complexity
arbitrarily. Furthermore, the game structure is mostly discrete,
facilitating the definition of state and action spaces.

However, the game poses several challenges for RL re-
search. Firstly, the observation and action spaces quickly
reach enormous sizes even for a small number of plant types.
Therefore, [1] classified a similar game based on the PvZ-
setup as a hard game for RL. Secondly, the original game
only remunerates the player for winning a level, turning the
reward matrix sparse. Hence, an adapted reward scheme may
be required. Thirdly, the set of available actions depends on
the state of the game, i.e. some actions may be illegal at some
point.

Though PvZ offers interesting challenges to tackle, it had
not been subject to extensive RL research before us. Hence,
our contribution was threefold. We developed a highly com-
patible PvZ environment using OpenAl gym (and pygame
for visualization). Furthermore, we created several agents on
the PvZ environment using RL approaches such as Deep Q-
Networks and policy gradient methods, and lastly we provided
a detailed empirical comparison of the different approaches.

II. BACKGROUND AND RELATED WORK

For our research project, we are interested in four state-of-
the-art RL approaches.

A. Monte Carlo policy gradient method (REINFORCE)

The policy gradient theorem [2] enables efficient estimation
through the gradient of the performance metric J(8) =

Ihttps://www.ea.com/ea-studios/popcap/plants- vs-zombies

]Eﬂ(Zf: 1 R¢), requiring only the gradient of the policy prob-
ability estimate:

VoJ(0) = Zd”(s) Z Q7 (s,a)Vemg(alb)., (D

ses a€A

Therefore, policy gradient agents are trained through stochastic
gradient ascent.

B. Deep and Double Deep Q-Networks

The basic idea of Deep Q-Networks (DQN) is the same as in
traditional Q-Learning approaches [3]]. In particular, the agent
observes a state s and chooses an action a from the action
space A. Next, it receives a reward r and reaches a new state
s’, in which it may choose a new action a’ € A. The value Q
of action « in state s can be written as

Q(s,a) = T+7513§Q(5’,a’), (2)

with the discount rate . The Q-table may thus be obtained
by an iterative procedure, e.g. gradient ascent:

Q(s,a) + Q(s,a)+a {r + Y max Q(s',ad') — Q(s,a)} , 3)

with the learning rate o. In contrast to traditional Q-learning,
DQN rely on deep neural networks gy, to learn @ [4] [5].
Therefore, () is updated by deriving the squared error with
respect to the weights w instead of @):

W wota o)l - (6] T o

There are some limitations to DQN [2] [6]. Firstly, the target
is non-stationary, which may lead to a low exploration of the
state space. One may mitigate this problem by applying an
e-greedy strategy, see Section [V-A]

A second issue might arise from the overestimation of
Q-values [2] which can be addressed by Double Deep Q-
Networks (DDQN). DDQN use a second network, the so-
called target network, to estimate the Q-values of the next
state-action pairs Q(s’, a’). Therefore, compared to DQN, only
the target changes slightly and the weight update evolves to

Wp < Wp + |:7" + ’Yg}eaﬁ[QWt (Sl>]a

- [qu<s>1a} Ve ldwy (o)

https://github.com/inf581-pvz-anonymous/pvz_rl
https://www.ea.com/ea-studios/popcap/plants-vs-zombies

with the original policy net weights wp and the newly intro-
duced target net weights wy. In this manner, DDQN decouple
the action choice from the actual target [2]]. The target network
is typically identical to the original one but set such that it
updates its weights more slowly.

C. Actor-Critic method

Actor-Critic methods combine elements of both prior ap-
proaches. The "actor’ model executes an action based on a neu-
ral net approximating the optimal policy (as in REINFORCE).
The ’critic’ model judges the actor’s policy by estimating
a value function with another neural net (similar to Deep
Q-Networks) [2]]. Although already trained agents will only
behave based on the learned policy, this trick reduces gradient
variance during the training phase, which makes the policy
update more accurate. This improvement comes at the cost of
slower computation, since we now have two models to train.

III. THE ENVIRONMENT
A. The game

PvZ is a tower defense game. The field consists of a fixed
number of lanes that are divided into single tiles. The zombies
enter randomly on the right side and try to reach the left. The
player can use their resources, namely suns, to buy plants and
place them on the tiles. In doing so, they have to respect the
cooldow of each plant purchase and the fact that only one
plant can occupy a given tile at the same timeﬂ

In total, we included four different plant types. The sun-
flower supplements the natural sun generation of the envi-
ronment and thereby increases the player’s purchasing power.
The peashooter attacks zombies on the same lane by shooting
peas on them. The wall-nut does not attack zombies but has a
lot of health points (HPs) and thus blocks the zombie inrush
for a certain amount of time. The potatomine activates after
a few seconds and then explodes as soon as a zombie enters
its tile, causing great damage. Furthermore, we defined four
different types of zombies, varying only in their amount of
HPsE] Details on our game implementation can be found in

Appendix |VIII-B

B. State observation

With respect to these key elements, we constructed the
observed state space S° in the following manner. At state
s € &§°, we let the agent observe the grid location of all
plants (including the locations of ’no plant’), the availability
of a plant type (requiring enough suns and having the plant
purchase’s cooldown phase over), the number of suns that the
agent has, and the grid with the HP sum of all zombies per

That is, the player has to wait between two purchases of the same plant
type for a predefined amount of time.

3Note that this occupation restriction does not include zombies. Several
zombies can be located at the same tile at the same time and the player may
even place a plant on these tiles.

4That is, they all have the same speed and the same attack strength, but
some are more resistant than others.

tileE] Hence, we can characterize the state by a vector with
2 X #lanes x #tiles per lane + #plant types + 1 = 95 entries.

C. Rewards

As mentioned in section [l the original reward definition is
very sparse since it only remunerates the player he wins the
level. We therefore adapted the game slightly to our needs.
Instead of pre-defining a level, we constructed a random
zombie spawner that generates zombie waves with increasing
difficulty. This allowed us to play a survival mode in which the
success of the agent is measured differently. In particular, the
agent gets rewarded for every zombie killed (stronger zombies
give higher scores when killed).

D. Step function and game balance

The step function associated with this environment consists
of running the game until at least another action than doing
nothing is available. Then the accumulated score during this
interval and the observation of the last frame are returned. The
frames per second (frame rate) thus determine the maximum
number of actions of the agent per second. We used a low
frame rate of 2 frames per second to increase the training
speed. This was deemed not to be too restrictive in comparison
to human behavior.

The right game balance was difficult to find. Our first
benchmark was on a fast-paced wave. In this version, the
zombies appear after 5 seconds and thereafter every 4 seconds.
Any time a zombie appears, its type is random. For instance,
before the start of the first wave, there is a 5% probability
to encounter the bucket zombie (HP: 1100), 10% to have the
zombie cone (HP: 560) and 85% to have the basic zombie
(HP: 190).

After the first 50 seconds of play a wave of zombies occurs.
This corresponds to the simultaneous appearance of 6 zombies:
One in each line with the same chances as previously, as well
as one flag zombie on the first line leading the wave. As the
waves go on, the difficulty increases. The probability of getting
non-basic zombies is doubled after each wave, until we reach
the S5th wave in which there are only bucket zombies. A wave
appears every 20 zombie generations (80 seconds) .

However, we realized that unlimited time (or in general,
high time limits) encouraged risky “all-or-nothing” strategies
based on gambles (for example by overcrowding a lane where
the agent thinks that more zombies will spawn). For example,
the REINFORCE algorithm strives to improve the expected
value of the total reward. Therefore, having a small chance
of getting very high rewards can be valued more than a safer
policy with lower rewards.

Hence, for the second benchmark, we chose to restrict
ourselves to a single wave of zombies. The second benchmark
is a slow-paced version in which the natural production of
sunlight is twice as slow, but in return the time frame for the
emergence of zombies and waves is doubled. A consequence

5The total HP is relevant enough because it is the only difference between
zombies, even though it doesn’t account for the fact that two mid-life zombies
causes twice as much damage as a single full-life zombie

of this choice is that agents rely less on chance because there
is a lower urgency, and they have longer-term strategies.

The presented environment requires the agent to learn the
different roles of the respective plant types, e.g. resource
generation, defense, and offense. The utility of a plant type
depends highly on its location and the location of other plants.
Moreover, there is a strong delay between the action and
its rewards that the agent has to understand. Such tasks are
essential for a vast range of challenging video games to which
our results may apply.

IV. THE AGENT

The sizes of both the observation and action spaces are very
significant (our agents were fed a 95-dimension observation
and decided on an action space of dimension 181). Because
of that, we were drawn to neural network based agents. Thus
we decided to focus on four state-of-the-art architectures for
RL agents, presented in [2] which are policy gradient (RE-
INFORCE algorithm), actor-critic methods, Deep Q-learning
(DQN) and Double Deep Q-learning (DDQN).

A. Policy gradient agent

We based our implementation of the REINFORCE algo-
rithm off the following repository [7]]. The probability estima-
tor is a Multi-Layer-Perceptron (MLP) with a single hidden
layer. Therefore, we could use pytorch and a negative log
likelihood loss to compute the gradient.

While REINFORCE provided great results on the fast-paced
version of the game, it performed rather poorly on the slower
benchmark (see [VI). The fast-paced benchmark is balanced in
such a way that the sun currency is not a great constraint.
Therefore, the agent does not have to make the choice of
investing in sunflowers early on and only has to learn plant
placement. In the slow-paced benchmark however, the policy
regressor gets stuck in a local maximum of the performance
metric and limits itself to the use of potatomines, which
provide fast reward (they one-shot zombies) for a low sun
cost, and wall-nuts, which are a short-term way to temporize
and delay the loss of the game. Because no sunflowers are
planted, probabilities of escaping are very low as peashooters
are unaffordable.

These lackluster performances highlighted the need for
better exploration. We adopted two parallel approaches. On
one hand, we implemented an actor-critic module, to reduce
variance in the hope of improving the training. On the other
hand, we decided to use an e-greedy behavior to drive the
gathering of samples and go off-policy. Instead of keeping a
policy gradient agent (by adding an off-policy correction to the
gradient as in [8]]), we chose to focus on Deep Q-Networks

(see [[V-C).

B. Actor-Critic agent

We drew our inspiration on both the basic actor-critic
algorithm seen in class [2] and the pytorch implementation of
an actor-critic agent from Soumith Chintala [9]. We decided
to use two separate MLP’s, one for the critic model and the

other one for the actor model, each with a single hidden layer
of size 80 with Leaky ReLU activation. A couple of tests
with alternative net architectures confirmed that our choice was
appropriate. However, given the slowness of training with such
parameters, we could not optimize the architecture extensively.

C. DON agent

Our base DQN revolves around a MLP with a single hidden
layer of size of 50. To overcome the issues of DQN mentioned
in section [l, we equipped our agent with a replay memory
of minimal size 100 and drew random mini-batches of 200 <
s,a,r,s > pairs, with state s, action s, reward r and next state
s’. In order to balance exploration and exploitation, we made
use of an e-greedy action choice, as explained in Section [V-A]

D. DDQON agent

Our DDQN agent uses the same base configuration as the
DQN (see above). Both agents are based on code provided in
[10]. As is common, the DDQN target network has the same
structure as its policy network. We synchronize them every
2000 training steps.

V. IMPROVING PERFORMANCE
A. Exploration

As Deep Q-Learning approaches (DQN, DDQN) often con-
verge to a local minimum quickly, they may suffer from low
state space exploration [2]. To overcome this issue, DQN and
DDQN are typically combined with an e-greedy action choice.
That is, the agent deviates from its currently best policy with
probability € and chooses a random action instead. The choice
of ¢ is crucial for the balance of exploration and exploitation:
A high ¢ allows for a broad search but might prevent the agent
from converging to the optimal policy, whereas a low € may
not enable the agent to escape local minima.

Reflecting the fact that high exploration is more valuable
in the beginning of the training episode, ¢ is often set in a
decreasing fashion. Following [6], we tested three functional
forms of the e¢-decrease: a linear, an exponential and a si-
nusoidal decrease. Details on the functions can be found in
Appendix As the DDQN agent appeared to perform
better than the DQN, we focused our experiments on DDQN.
It turned out that during a couple of tests, we couldn’t identify
a clear winner among the methods. Finally, we decided for the
exponential form since it is a common choice in the literature
[6]]. Figure [T depicts two of the test cases.

B. lllegal actions

An important challenge of our environment is the handling
of illegal actionsE] While working on the fast-paced bench-
mark, we decided to simply ignore illegal inputs from the
agents. However, we realized that from the agent’s standpoint,
such an approach creates a lot of uncertainty, especially since
no action brings immediate reward. Therefore, we followed

Si.e. planting a plant on already occupied tiles, having not enough suns, or
being in a cooldown phase.

1600
—— Rewards: agent_in_t4
It 4

1400

wo
A
i W, i,

M |

1200

1000

0 20000 40000 60000 80000 100000 4 20000 40000 60000 80000 100000

Fig. 1: Two exemplary performance tests of functional forms
of € for the DDQN agent: linear vs. exponential vs. sinusoidal
decrease. We depict total rewards as well as the iterations
survived.

the approach used by Deepmind [11] and masked ouI{Z] the
illegal moves in the greedy action choices from the predicted
Q-values both when submitting an action to the step function
of the environment and when computing the DQN and DDQN
loss.

C. Action asymmetry

By trying to help the agent learn a suitable strategy for
the more challenging slow-paced benchmark, we reflected on
the asymmetry of the action space. When using a uniform
behavior policy for the exploration case of the e-greedy policy,
we do not give enough importance to the act of doing nothing
(without masking, its probability is 1/181). Therefore, we
changed the behavior policy to increase the probability of do-
ing nothing during exploration. Through serendipity, we found
out that the results were better when increasing the chances of
doing nothing only during the initial pure exploration-based
initialization of the replay memory. We present a plausible

explanation in

D. Observation features

To limit the size of the observation space and make the
training faster, we applied some preprocessing of the observa-
tions. Though feature engineering was not the main focus of
our project, we conducted some successful and less successful
experiments.

We fed the plant grid to the network as a single grid with
the plant index on each cell instead of a one hot-encoding
of the grid. This is usually bad practice. However, in our
case, it provided better results due to the smaller dimension
of the observations. Also, instead of feeding the whole grid of
zombie HPs to our networks, we used the sum of the zombies’
HP on each lane to obtain a scalar per lane. This is a limiting
observation in the sense that the agent will not know where
the zombies are on the lane.

Other transformations led to less successful results. Dis-
cussion on one of these methods (linear regression) and its
results is available in the appendix Also, we found
out that scaling the zombies’ HP gave worse results, which is
an expected behavior when scaling down the most important

TThat is, after predicting the Q-values with the neural net, we check for
illegal actions and set their Q-values manually to a minimum value.

TABLE I: Results on the slow-paced benchmark

Masked Mean score Mean iterations
REINFORCE NO 324.4 145.549
REINFORCE YES 538.12 165.217
Actor critic NO 678.68 165.894
DQN YES 1651.36 306.288
DDQN YES 1892.04 338.413

—— Greedy action policy
—— e-greedy action policy

1800

Total score
Number of frames survived

Number of plays Number of plays

Fig. 2: Learning curves of the DDQN agent. The framerate
was 2 and the end of the game was at 400 frames.

feature. Therefore, we did not apply scaling for our best
agents.

More generally, our observation space features symmetries
(interchangeability of the lanes) and spatial domains (a lane
behaves like a discretization of a segment). Therefore, a
thorough feature engineering approach could greatly improve
the proficiency and the training speed of the agent. However,
we rather focused on the comparison of the four different agent
types and did not tackle feature engineering in-depth in our
project.

VI. RESULTS AND DISCUSSION
A. Results

On the fast benchmark (with high amounts of sun currency),
all agents displayed good plant placement such as planting
peashooters as far as possible on the left of the lanes, or
accumulating as many zombies as possible with a plant in
front of a potatomine to kill them all at once afterwards.
These are efficient human strategies. On the slower benchmark
(see TABLE [I), except for the gradient policy agent, they all
managed to learn the importance of sunflowers. The difference
of playstyle between the policy gradient agent and the DDQN
agent is further illustrated in the appendix. DQN and DDQN
show very similar, fairly strong results, even in the slow-paced
environment. They are better than actor-critic, most likely due
to deeper exploration. As seen in Figure[3} DDQN wins almost
65% of the time. Though the shape of the learning curves
in Figure [2 first might imply that further training could be
beneficial, retraining the agent did not yield better results.

B. Input features

We evaluated Shaply Additive exPlanations (SHAP) values
for our trained DDQN agent (see Figure) using the repository

300

250

150

100

Number of plays

500 1000 1500 2000 2500 150 200 250 300 350 400

Total score Number of survived frames

Fig. 3: Histograms of the performances of the trained DDQN
agent on 1000 plays.

Feature 50

Feature 18
Feature 47

000 20000 30000 40000 50000
mean(|SHAP value]) (average impact on model output magnitude)

Fig. 4: SHAP value of the different input features for the
DDQN agent. In red: information on zombies on each lane. In
green: the plant grid. Feature 50 is the sun amount and feature
54 the availability of the potatomine.

[12]. The action asymmetry is illustrated once again but we
can also see that the information concerning the zombies
and the suns is quite important. Moreover, the plant grid
cells at the beginning of the lanes (multiples of 9) are also
important. This is interesting because they are a way for the
agent to detect dangerous zombies advances without having
access to their position (a plant disappearing at these cells
means that a zombie is near the end). Such disparity in the
input’s importance, in addition to the previous considerations,
further establishes feature engineering as an opportunity to
make training more efficient.

C. Masking illegal moves

Masking illegal moves (as explained in Section [V-B| im-
proved performances for all agents on which it was used.
For example, for two DDQN agents trained on 100 000 plays
(using a sinusoidal epsilon function, a batch size of 32 and a
grid with only 3 lanes) we obtained an average score of 811.4
for the unmasked version, while the masked version scored
1291.64 in average.

D. Action asymmetry

As explained before, our best results were obtained when
increasing the probability of doing nothing only during ex-
ploration in the first episodes. This is most likely a result

Policy gradient agent
(unmasked)

DDQN agent

Policy gradient agent
(masked) (masked)

| M n

Action

Mean usage density

"

“ i

Action

&l

Y

Action

Fig. 5: Action used by policy gradient (unmasked actions) and
DDQN (with masked actions) agents. Action 0 means doing
nothing, then action id is 14+idpiant +Npiants * (lane+nignes *

pos).

of masking. Indeed, as we can see on Figure [5] masking
reduces noise in the agent’s decisions and the agent learns
the importance of doing nothing and uses it pretty often.
Therefore, it may no more be necessary to push exploration
in that direction as much. By keeping the correction for too
long, we may prevent the network from learning how to use
the other actions well.

E. The tuning of hyperparameters

One of the biggest challenge we encountered was the tuning
of the many hyperparameters and degrees of freedom of our
implementation such as the reward function, the architectures
of the networks, training parameters (number of plays, learning
rates, size and frequency of the updates), the action asymmetry
correction, and the e function for the e-greedy behavior policy.
Because of the significant number of iterations needed to
observe results (especially since early high scores are not an
indicator of a suitable agent, as seen with policy gradient), we
could not use grid search to optimize these parameters. Hence,
we proceeded empirically to find a satisfying, yet most likely
suboptimal, set of parameters. In addition to that, the game
balance is another degree of freedom and creating a suitable
benchmark required its fair share of trial and error.

VII. CONCLUSION AND FUTURE WORK

After developing a realistic Plants vs. Zombies environment
compatible with OpenAl gym, we were able to train a va-
riety of Reinforcement Learning agents. We obtained very
promising results, with a DDQN algorithm beating a self-
designed, randomly generated, high difficulty level 65% of
the time. In order to improve the performances, we identified
main areas of research which are proper feature engineering
(using feature importance, space symmetries and space topol-
ogy to pre-process the observations) and tuning of the many
hyperparameters.

In addition to that, other ideas could be tried, for instance
involving CNN’s to work directly with the game visual win-
dow as an input and let the network learn important features
by itself.

The study of a tower defense game such as PvZ presents
great potential for RL research; consequently, the results
exhibited in this report may serve as a starting point for future
research.

REFERENCES

Bontrager, P., Khalifa, A., Mendes, A., & Togelius, J. (2016). Matching

Games and Algorithms for General Video Game Playing. Proceedings

of the AAAI Conference on Artificial Intelligence and Interactive Dig-

ital Entertainment, 12(1). Retrieved from https://0js.aaai.org/index.php/

AlIDE/article/view/12884

[2] As mentioned in Lecture VII - Reinforcement Learning III. INF581
Advanced Machine Learning and Autonomous Agents, 2021.

[3] As mentioned in Lecture VI - Reinforcement Learning II. INF581
Advanced Machine Learning and Autonomous Agents, 2021.

[4] Mnih, Volodymyr, et al. ”Playing atari with deep reinforcement learning.”
arXiv preprint arXiv:1312.5602 (2013).

[5] Mnih, Volodymyr, et al. "Human-level control through deep reinforcement
learning.” nature 518.7540 (2015): 529-533.

[6] Chuchro, Robert, and Deepak Gupta. "Game playing with deep g-learning
using open-ai gym.” Semantic Scholar (2017).

[7] Mathias Sundholm “Open AI Gym Zoo” |https://github.com/maitek/

openai- gym-zoo/blob/master/pytorch_agent.py

https://lilianweng.github.i0/111-10g/2018/04/08/

policy-gradient-algorithms.html

[9] Soumith Chintala “Actor Critic Implementation” https://github.com/
pytorch/examples/blob/master/reinforcement_learning/actor_critic.py

[10] DataHubbs https://www.datahubbs.com/
double-deep-g-learning-to- get- the-most-out- of- your-dqn/

[11] Deepmind “Open Spiel” https://github.com/deepmind/open_spiel/tree/
b1b321a57754df76309ed9d7ac3c9b449ed34901

[12] Slundberg "SHAP” https://github.com/slundberg/shap

[1

—

[8

[t}

VIII. APPENDIX
A. Functions for the e-decrease

Following [6] we tested three functional forms for the
decrease in ¢. Equations (6)-(8) show the linear, exponential
and sinusoidal functions with the value of ¢ in the first and in
the last training period €g;4,¢ and €¢yq, the number of training
episodes n, the current training episode x and the number of
sinusoidal periods f:

€end — Estart

£ = EStllT‘t + E———— (6)
n
c 1/n
£ = Eatars - b%, with b= <”d> 7)
Estart
21 f -
€= €start - 0° - 0,5 {1—1—005 (fo)] , 8
n
1/n
with b = (%) . Figure |6|illustrates the functional forms.
1.04 —— linear

exponential

08 —— sinusoidal

0.6

0.4

0.21

0.0 -

T T T T T
[20000 40000 60000 80000 100000

Fig. 6: Functional forms of the decrease in ¢.

B. Game implementation

In order to be able to adapt the environment in a flexible
way, we implemented a remake of PvZ from scratch. To
prevent us from ’engineering’ the game to fit our agents, we
tried to remain true to the original game structureﬁ To this end,
we defined three classes of field elements: Plants, Zombies and
Projectiles. Hence, one can easily extend the game by creating
a new plant type with a new attack mechanism. As explained
in the main part, we included four distinct plants: sunflowers,
peashooters, wall-nuts, and potatomines.

TABLE II: Plant types and characteristics

Cost HP Attack Sun prod. Cooldown
Sunflower 50 300 0 25 5
Peashooter 100 300 20 0 5
Potatomine 25 300 oo (once) 0 20
Wall-nut 50 4000 0 0 20

In order to make the game compatible for future RL
research, we relied on OpenAl gynﬂ as an interface between

8Details from |https://plantsvszombies.fandom.com/wiki/Main_Page were
very helpful to us.
9https://gym.openai.com/

https://ojs.aaai.org/index.php/AIIDE/article/view/12884
https://ojs.aaai.org/index.php/AIIDE/article/view/12884
https://github.com/maitek/openai-gym-zoo/blob/master/pytorch_agent.py
https://github.com/maitek/openai-gym-zoo/blob/master/pytorch_agent.py
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://github.com/pytorch/examples/blob/master/reinforcement_learning/actor_critic.py
https://github.com/pytorch/examples/blob/master/reinforcement_learning/actor_critic.py
https://www.datahubbs.com/double-deep-q-learning-to-get-the-most-out-of-your-dqn/
https://www.datahubbs.com/double-deep-q-learning-to-get-the-most-out-of-your-dqn/
https://github.com/deepmind/open_spiel/tree/b1b321a57754df76309ed9d7ac3c9b449ed34901
https://github.com/deepmind/open_spiel/tree/b1b321a57754df76309ed9d7ac3c9b449ed34901
https://github.com/slundberg/shap
https://plantsvszombies.fandom.com/wiki/Main_Page
https://gym.openai.com/

the agents and the environment. As visual results can be
interpreted more easily by a human, we added a pygameﬂ
interface on top of it. We visualized the objects using the
resource database of the PvZ fandom[T] This allowed us
to display the agent’s gameplay and detect its weaknesses
quickly. Figure [7] and Figure [§] show two exemplary game
situations.

C. Comparison of the gamestyles of different agents

As mentioned in the main part, the different agents devel-
oped different gamestyles. Figures [7] [8] and [9] illustrate that
behavior.

Fig. 7: Policy gradient agent playstyle. Long-term investments
such as sunflowers are ignored, hence the scarcity of sun,
the small number of plants and the absence of expensive but
powerful peashooters.

Fig. 8: DDQN gamestyle. The back of the field is much
more populated than the front. The potatomine tends to be
protected by other plants to accumulate zombies in front of it
and maximize the deadliness of its explosion. Sunflowers are
a priority of the agent in the early game.

Policy gradient (masked) DDQN (masked)

Average probability

wall-nut
-ashooter Potatomine

Wall-nut
Potatomine

Sunflows sunflowe

er
Peashooter

Fig. 9: Usage of the different available plants by a policy
gradient agent and a DDQN. The policy gradient agent com-
pletely ignores sunflower and peashooter as stated previously.
Potatomines are highly used by both agents because they are
a low price single use item that therefore needs to be replaced
often, despite a high cooldown.

10|https://www.pygaLme.0rg/|
hitps://plantsvszombies.fandom.com/wiki/Main_Page:

D. Zombie data preprocessing

Because we identified symmetries in the observation space,
we tried to use a simple linear regression to each lane as
a preprocessing of the zombie grid. We also tried hand-
crafting other types of observations such as a sum weighted
towards the end of the lane (inspired by what was learned by
the linear regression) or a couple containing the sum of the
zombie’s hp and the progress of the zombie on the lane. Both
of these attempts provided underwhelming results, however
the regression showed improving results with longer training,
showing that the lack of encouraging results may have just
been a symptom of an incomplete training due to an increased
number of parameters.

TABLE III: DDQN with linear regression

Plays Mean score Mean iterations
DDQN 1K 1892.04 338.413
DDQN with regression 1K 1057.8 234.401
DDQN with regression 1.5K 1659.08 311.011

The learned parameters of the regression trained to be
applied to the grid containing zombie HPs, lane per lane
(before being fed to the our DDQN agent) are the following:

[—6.4347, —0.8138, —0.3569, —0.1997, —0.1913, —0.1612,
—0.1236, —0.0794, —0.0613], bias : 11.0534

Clearly, this is heavily weighted towards the end of the lane
(if a zombie reaches 0, the game is lost).

https://www.pygame.org/
https://plantsvszombies.fandom.com/wiki/Main_Page

	Introduction
	Background and Related Work
	Monte Carlo policy gradient method (REINFORCE)
	Deep and Double Deep Q-Networks
	Actor-Critic method

	The Environment
	The game
	State observation
	Rewards
	Step function and game balance

	The Agent
	Policy gradient agent
	Actor-Critic agent
	DQN agent
	DDQN agent

	Improving performance
	Exploration
	Illegal actions
	Action asymmetry
	Observation features

	Results and Discussion
	Results
	Input features
	Masking illegal moves
	Action asymmetry
	The tuning of hyperparameters

	Conclusion and Future Work
	References
	Appendix
	Functions for the -decrease
	Game implementation
	Comparison of the gamestyles of different agents
	Zombie data preprocessing

