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Abstract

Optimal Control is a widely used controlling method. It
is a process of determining control and states for a system
over a period of time to minimise a predefined performance.
In this report, four commonly used optimal control methods
will be introduced. The literature review and applications
of these four methods are also covered.

1. Introduction

In classical control system design, multiple methods of
analysis, like PID controller, aim at trying and employing
repeatedly different parameters to fit the system. As the
criterion for whether the design is acceptable, some indi-
cations in the time and frequency domain such as rising
time, settling time, overshoot, and bandwidth are calcu-
lated and considered. However, in the control theory prob-
lems, the complex MIMO system (multiple-input, multiple-
output system) requires that different performance criteria
must be satisfied. For example, during the control design
of UAV (unmanned aerial vehicle), fast take-off speed, ac-
curate trajectory tracking, and less fuel consumption are all
desired results. This is a difficult problem for traditional
control methods. Therefore, optimal control methods are
proposed to solve the optimization problem of such com-
plex systems [1].
The goal of optimal control theory is to determine the con-
trol signals that will cause a process to satisfy the physical
constraints and at the same time minimize (or maximize)
some performance criteria [1]. The cost function is used
to measure performance. In other words, a suitable crite-
rion needs to be chosen and then minimizes the value of
the corresponding cost function [2]. The specific formula
of performance J is:

J =

∫ t

t0

F [x(t), u(t), t]dt (1)

where x(t) is the state of the system, u(t) is the input, t0 is
the initial time and t is the end time. Take the UAV, which

is mentioned above, as an example, if the design goal is
to reach the target height as quickly as possible. The sys-
tem state is the position, velocity, and angular velocity of
the UAV, the control variable is the motor speed, and the
optimal performance is to make the time shortest. In this
situation, the cost function can be expressed as:

J =

∫ t

t0

1dt (2)

Another common problem is that the energy consumption is
desired to be the least when the target height can be reached
within a certain period. The states and inputs remain un-
changed, and the optimized cost function becomes:

J =
1

2

∫ t

t0

u(t)2dt (3)

The design of optimal control depends upon the choice of
J. After selecting a suitable performance index, the control-
ling part in the system can be determined by many methods.
In the next four chapters, four major methods ( of optimal
control will be introduced, including the basic principles,
related literature, and future outlook.

2. Methods and Literature Review

2.1. Linear Quadratic Regulator

2.1.1 Definition

If the system dynamics can be represented by a set of lin-
ear differential equations, and the cost function is quadratic,
such problems are called linear quadratic (LQ) problems,
and the controller is called linear quadratic controller
(LQR). Back to the UAV problem mentioned in chapter 1,
when the UAV is expected to fly along the preset path ac-
curately and consume little energy, the positional state error
should be small and the input amount should also be small
at the same time. Since the value may be positive and neg-
ative, the squared value xTx is chosen to evaluate the error
and uTu is for the input energy [3]. Now the problem is



changed to minimize these two squares, which can be ex-
pressed like below:

J =

∫ t

t0

(xTx+ uTu)dt (4)

A major feature of the LQR is that this method can deal with
multiple inputs and multiple outputs problems. For exam-
ple, when considering the problem of reaching the target
height, the error of the position state is expected to be mini-
mized, and the requirement for the accuracy of the position
in the Z-axis direction is higher than that of the X-axis and
the Y-axis. In other words, some states and actuators are
more cared for than others. This can be achieved by adding
two matrices to the equation: Q and R. Both matrices are
positive definite. If a certain value in the Q matrix is set
to be very large, a slight change in the corresponding state
will lead to a significant change in the J value, which is
equivalent to ”penalizing” the state. Therefore, the key to
designing the LQR controller is to select the appropriate Q
matrix and R matrix to constrain the system to obtain the
desired control result [3]. The equation of J with Q and R
matrices is:

J =

∫ t

t0

(xTQx+ uTRu)dt (5)

After selecting the Q and R matrices, the feedback can be
calculated by:

K = R−1BTP (6)

Among them, the value of P is obtained by the ricatti for-
mula:

PA+ATP − PBR−1BTP = −Q (7)

It should be noted that P and K are time-variant. Only when
t in equation (5) approaches infinity, P can be a constant
value calculated by equation (7) [3]. The mathematical cal-
culations involved will not be described in detail.
Figure 1 shows the workflow of the LQR designing. The

Figure 1. The flow of designing the LQR con-
troller

choice of Q matrix and R matrix depends on the experi-
ence of engineers. In practical applications, the weights of
Q and R are usually initialized as identity matrices I . Then

change the corresponding element values in Q and R ac-
cording to the acceptable error of different variables. If the
units of the variables are different, it is reasonable to com-
pare the numerical relationship by setting a reference unit.
For example, in a system, there are two states: the position
and the angle. The error of the position state is expected to
be no more than 1 m, and the angle error is no more than
1/60 rad. If meter and rad are selected as the reference units,
it is obvious that the requirements for angular accuracy are
stricter, and the ”penalty” for this error should be larger. In
other words, the corresponding element value in Q should
be larger. The ratio of the elements for the position and the
angle in the Q matrix can be set to 1:3600 (the square is be-
cause the square part xTQx in J) [4]. After selecting the Q
and R matrices, output the results, and then adjust Q and R
according to the results. These tasks are all done manually.
In recent years, more and more methods for automatically
obtaining Q and R matrices have been proposed, which will
be introduced at the end of the next section.

2.1.2 Development of LQR method

As the name suggests, the LQR controller is mainly used
to deal with linear problems. When the system equations
can be transformed in linear form, LQR can be used to de-
sign the control model and calculate the feedback through
the Riccati equation. An example of robot control by us-
ing LQR will be given in this section. Secondly, how to
use LQR control in nonlinear problems will also be intro-
duced. Finally, with the development of advanced algo-
rithms such as metaheuristic algorithm, there are more and
more researches on combining advanced algorithms and
LQR methods to automatically obtain Q and R matrices,
which will be introduced at the end of this section.

Linear Problem LQR optimization control can play an
important role in controlling the robots by providing all
states of the system for feedback, including velocity and
position. Abdolshah et al. [5] design an LQR controller
for a planar parallel robot to reach a good path tracing with
a torque smaller than 3.5 N. The structure of the robot is
shown as Figure 2 (a). The robot has three DOF (degrees
of freedom). There are four cables at the lower end of the
plane which is respectively connected with a circular actu-
ator. The other end of the cable is directly connected to the
motor through a pulley. The force analysis of the robot is
shown in Figure 2 (b) [6]. Since this chapter focuses on
the design of the LQR controller, the detailed force analysis
calculation and derivation of the state formula will be ig-
nored. For the robot system, a state equation as follows will



Figure 2. The Feriba-3 cable-driven parallel
robot from [5]. (a)Overview; (b)statcs dia-
gram

be obtained:
q̇1
q̇2
q̇3
q̇4
q̇5
q̇6

 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




q1
q2
q3
q4
q5
q6



+


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1

m 0 0
0 0 0 0 1

m 0
0 0 0 0 0 1

I




0
0
0
FX
FY
M

 (8)

where six states from q1 to q6 are the positions, velocities,
and angular velocities of the robot in the X and Y directions.
FX , FY , and M are the forces applied on the robot, which
are considered as the input variable [5].
Because the desired action is to minimize the tracing er-
ror (output) and limit the torque and the force (input), the

performance index is designed as below:

J =

∫
0

∞[yT (t) ·Q · y(t) +WT (t) · L ·W (t)]dt (9)

where Q is the weight matrix for the output and L is for
the input. After trying different values for the Q and the L
matrix, the elements are selected as follows:

Q =


2.5× 106 0 0 1 0 0

0 2.5× 106 0 0 1 0
0 0 1.8× 103 0 0 1
0 0 0 1.6× 103 0 0
0 0 0 0 1.6× 103 0
0 0 0 0 0 3


(10)

L = I (11)

The trajectory is a circular path. The final result is shown
in Figure 3. The system with the LQR controller fits the
reference path much better than the open-loop. And all the
forces are smaller than 2 N.

Figure 3. Comparison of the open-loop and
the LQR controller of the circular trajectory
from [5]. (a)X-axis (b)Y-axis (c)rotation angle
(d)-(f) the errors

Nonlinear System The LQR controller is only suitable
for linear systems, which means that the state equation of
the system should be able to be transformed into a linear
form. In practical problems, many models cannot be sim-
ply described by linear systems. But this does not mean
that the LQR controller cannot handle these nonlinear prob-
lems. The local linearization method can be used to trans-
form nonlinear systems into linear systems on a local scale
[3].
Kazeminasab et al. [7] tried to solve the nonlinear problem
with the LQR controller. This research aims at an in-pipe
robot, which is used to detect the quality of drinking wa-
ter in WDS (Water distribution System). The geometrical
representation of the robot is shown in figure 4. Due to the



pressure caused by the water flow in the pipe and the uncer-
tainty of the pipe shape, the motion control of the in-pipe
robot in the pipe becomes a challenge. The authors pro-
pose a motion control algorithm that can stabilize the robot
while tracking the desired velocity. As shown in the figure

Figure 4. Robot modelling from [7]. (a)CAD
design (b)Free body diagram in the pipe
(c)geometrical representation

4 (b), the power of the in-pipe robot is provided by three
actuators, and the forces applied are F1, F2, and F3. In ad-
dition, there is another dominant force applied to the robot:
the drag force Fd. The drag force produced by the fluid is
typically nonlinear, and its formula is as follows [8]:

Fd =
1

2
ρCdA(Vr − Vf )2 (12)

where ρ is water density, Cd is the robot’s drag coefficient
andA is the frontal area of the in-pipe robot facing the flow.
Vr is the velocity of the robot in the X-axis, and Vf is the
velocity of the flow. The overall motion equation of the
robot can be described as [7]:

F1 + F2 + F3 +
1

2
ρCdA(Vr − Vf )2 = mẍ (13)

Since the control purpose of the in-pipe robot is to make the
robot track the target velocity, Vr in the formula is one of
the states in the system. Equation (13) is a quadratic equa-
tion about the state, not linear. The authors also discuss the
equation of the torque in the paper. In this section, only the
dynamical equation (13) is used as an example to introduce
the application of local linearization.
F1, F2, and F3 are produced from the actuators, which are
the input of the system. Therefore, these three forces can
be represented by vector u. Then the dynamical equation
can be defined as ẋs = F (xs, u). The local linearization
method is to linearize the equation around the equilibrium
point with Taylor series. The equilibrium point of the state

and the input can be easily obtained: xes = [0 0 0 0]T

and ue = [0 0 0]T , and the state equation at this point is
like [7]:

ẋs = F (xs, u) = F (xes + δxs, ue + δu) (14)

According to the Taylor series, it can be:

δẋs =
∂F

∂xs
δxs +

∂F

∂u
δu+O(xs) +O(u) (15)

where O(xs) and O(u) are terms with higher order in Tay-
lor expansion, which can be dismissed. The rest of the equa-
tion is like:

δẋs =
∂F

∂xs
δxs +

∂F

∂u
δu = Aδxs +Bδu (16)

Then the partial derivatives can be used as the A and B
matrices in the equation of state. The nonlinear dynami-
cal equations can be transformed into local linear. When
the linearization is successfully achieved, the next steps are
the same as the example in the previous section. By select-
ing the appropriate Q and R matrices, the LQR controller
is implemented to track the target speed and maintain the
stability of the robot. Figure 5 and 6 show the final result,
it takes less than 0.5 seconds for the robot to reach the de-
sired velocity and the deviation angle can be stabilized in 1
second. It should be noticed that the author made a small
mistake in the legend. The desired velocity of the yellow
line in figure 5 should be 0.5.

Figure 5. Linear velocity of the robot from [7]

Combined with Advanced Algorithm The applications
of the LQR controller in the linear and nonlinear system are
introduced before. A remained problem is that the selection
of Q and R matrices must be done manually. It is very em-
piric and time-consuming. More and more engineers started



Figure 6. Performance of the controller in sta-
bilizing φfrom [7]

to find a method to implement the automation of the param-
eter selection step.
Howimanporn et al. [9] proposed to combine LQR con-
troller with PSO (particle swarm optimization) method.
PSO is an evolutionary algorithm that was developed by
Kennedy and Eberhart [10]. This algorithm optimizes prob-
lems based on iterative cooperation and competition among
individuals by imitating the behavior of individuals in a
group. The authors use the LQR controller to stabilize the
inverted pendulum system and use PSO to determine the
optimal gain under the condition of the LQR controller cost
function. The diagram of the system is shown in figure 7.

Figure 7. Block diagram of PSO based LQR
on inverted pendulum system from [9].

The inverted pendulum model is a very classic control
problem. Therefore, the dynamical equation of the inverted
pendulum will not be presented here. PSO algorithm is
adopted to search for the optimal gain of the LQR controller.
The generation is set to 100 iterations and the population
size is initialized as 40. The state-space contains two states:

the position and the velocity. The velocity in the next itera-
tion can be calculated by [9]:

vk+1
ij = wvkij + c1r1(pbest

k
ij − xkij) + c2r2(gbest

k
ij − xkij)

(17)
where vk+1

ij is the current velocity of particle generation and
vkij is the velocity in the previous generation. w is the fac-
tor changes iteratively. r1 and r2 are generated randomly
to simulate the random influence from the environment. c1
and c2 are preset constants. pbestkij is the individual best so-
lution and gbestkij is the global best solution. The individual
best solution should be set according to the limitation and
target of each particle, and determine the global solution for
the population [9]. xkij is the previous position, and the cur-
rent position can be calculated by:

xk+1
ij = xkij + vk+1

ij (18)

After designing the PSO algorithm and choosing the param-
eter of Q and R matrices, calculate the result and compare
the global best with the target. If the termination criterion is
met, the global best solution is the optimal gain. If no, back
to equation (17) and (18) to calculate in the next generation.
Figure 8 shows the final result, it can be seen that after 30 -
40 iterations, the value of the cost function reaches a good
result [9].

Figure 8. Value of global best of performance
in the cost function from [9].

2.2. Model Predictive Control

2.2.1 Introduction

Model predictive control (MPC) is an advanced method of
process control based on the principle of predictions to a
finite horizon at each sampling time starting from the cur-
rent state. Since the state of the system is updated during
each sampling period, a new optimization problem must be
solved recursively. It uses a dynamic model of the system



to make predictions about the system’s future behavior, and
optimize the forecast to produce the best decision while sat-
isfying a set of constraints. Therefore, the model, which
is intended to represent the behavior of complex dynamical
systems, plays an important role in MPC.

Figure 9. Model Predictive Control Scheme
from Varma et al. [11]

The MPC strategy is illustrated in 9. The future out-
puts for a determined horizon N, called the prediction hori-
zon, are predicted at each sampling time using the dynamic
model of the system. The past trend for the outputs y up
to t and inputs u up to t are known. The controller is then
to find the future trend for the control inputs which keep
the predicted outputs as close as possible to the reference
trajectory. This step usually takes the form of a quadratic
cost function of the errors between the predicted output and
the reference trajectory. The control inputs are obtained
through iteration. For linear systems, if a linear or quadratic
objective function is considered, the resulting optimization
is a linear or a quadratic programming problem, respec-
tively. In contrast, for nonlinear systems, the optimization
becomes a nonlinear programming problem which is non-
convex in the majority of cases. This MPC scheme is im-
plemented using the block diagram shown below

DDynamic model

DOptimizer

Current state
Reference

trajectory

+

_

Future

errors

Cost

function Constraints

Future control

input

Predicted

output

Figure 10. Model Predictive Control Block Di-
agram

As shown in the figure 10, MPC uses a dynamic model to
predict the future system outputs, based on past and current
values and on the proposed optimal future control actions.
With the reference trajectory, the difference between the ref-
erence trajectory and the predicted output is fed back to the
optimizer, which minimizes the quadratic cost function and
considers the constraints to determine the controller out-
puts. The controller outputs are implemented in real-time
and then the process is repeated every sampling time with
actual process data.

2.2.2 MPC Method

MPC is used to control a process while satisfying a set
of constraints and uses a model of the plant to make
predictions about future plant outputs. In Alothman et
al.[12], a nonlinear MPC controller is developed to control
the suspended payload position carried with two quadro-
tors by cables. The dynamic model is derived using the
Euler-Lagrange equation. In Varma et al.[11], the authors
compares different controllers’ performances for trajectory
tracking in autonomous driving. The dynamic model of ve-
hicle is derived using Newton-Euler Method. In Chen et
al.[13], the authors design input convex networks to obtain
accurate models of complex physical systems. Then opti-
mal controllers can be achieved via solving a convex model
predictive control problem.

Model of Plant Predictive models are the mathematical
model which describe the behaviour of the real system. The
two most commonly used mathematical modeling methods
are Newton-Euler and Euler-Lagrangian.

Euler-Lagrange Method In Alothman et al.[12], the dy-
namics of quadrotor-payload system with 13 degrees of



freedom are derived from Euler-Lagrange method which is
energy-based approach:

L(q, q̇) = T (q, q̇)− U(q) (19)

where L(q, q̇) is the Lagrangian, T (q, q̇) is kinetic energy
and U(q) is potential energy. Then the Euler-Lagrange
equation is

d

dt
(
∂L

∂q̇
)− ∂L

∂q
= Q (20)

The generalised force Q defined here is based on the choice
of the generalised coordinates q and the external conserva-
tive force Fi.

Figure 11. Two quadrotors carrying a payload

Taking the generalised forces and equation (19) into
equation (20), the Euler-Lagrange equation based on M
matrix and the system model function f can be rewritten
in

Mq̈ = f(q, q̇) (21)

And the nonlinear discrete dynamic model is:

xk+1 = f(xk, uk) (22)

*Newton-Euler Method In Varma et al. [11] and Chen et
al. [14], the vehicle model applied in both papers is the
vehicle bicycle kinematic model and the vehicle dynamics
is derived from Newton-Euler method. The updated vehicle
state after one sampling time is:

v1 = v0 + aTr

θ1 = θ0 + kl

x1 = x0 +
sin(θ0 + kl)− sin(θ0

k

y1 = y0 +
cos(θ0 + kl)− cos(θ0

k

(23)

where Tr is sampling time and the distance the vehicle
moves in one sampling time is l = v0Tr + 1

2aT
2
r , and

the curvature is k = tan δ
L . The state vector includes

x = [x, y, v, θ] which is x-y position and velocity, and head-
ing angle. The control input includes u = [a, δ] which is the
acceleration and the steering angle. L is the wheel base. The
vehicle dynamic equation can be rewritten as:

xk+1 = f(xk, uk) (24)

Figure 12. Bicycle Model Co-Ordinamte Sys-
tem

Cost function Once the model is built, the formulation
of the MPC problem still requires the cost function to be
minimized and the constraints to be imposed. The general
cost function is concerned with the penalties for states and
control inputs. Each cost is calculated for all stages of the
prediction and added together. The cost function in Chen et
al. [14] has the following form:

J = (xN − xref,N )TQf (xN − xref,N )

+

N−1∑
i=0

((xi − xref,i)TQ(xi − xref,i)

+ (ui − uref,i)TR(ui − uref,i))

(25)

where the terminal state and its desired state are denoted
by xN and xref,N , respectively, and the reference state is
denoted by xref,i. The prediction horizon is denoted by
N . Qf and Q are presented by positive semidefinite state
matrices and R is presented by positive definite matrix. Re-
gardless of the UAV system of Alothman et al.[12] or the
vehicle of Chen et al. [14], the cost penalty for the errors
between reference states and actual states is for trajectory



tracking, and the cost penalty for the control inputs is to pe-
nalize rapid change of control inputs which is always related
to safety and comfort.

Constraints Additionally, operational constraints must
be taken into account during the minimization of the cost
function. In reality, all systems are subject to constraints.
There are a lot of reasons causing limits in a system, such
as safety, regulations, or environmental conditions. In most
MPC problem formulations, only two types of constraints
considered are states and control inputs constraints. The
constraints on the inputs are in general hard constraints
which impose lower and upper bounds on these variables,
that is:

u(k) ∈ U := u ∈ Rm : umin ≤ u ≤ umax,∀k ∈ [0, N−1]
(26)

The states constraints are in general of the form:

x(k) ∈ X := x ∈ Rm : xmin ≤ x ≤ xmax,∀k ∈ [0, N−1]
(27)

Other constraints can also be introduced for specific goals
such as collision avoidance goals in Chen et al. [14]:

d(xk, O
k
j ) > 0, k = 1, 2, ..., N.J = 1, 2, ...,M (28)

There are m obstacles and Okj is the space occupied by the
jth obstacle at time step k, d(xk, Okj ) is the distance from
the host vehicle to the jth obstacle at time step k.

Optimal Control Problem With a dynamics model, cost
function and constraints on states and control inputs, a dis-
crete time version of the constrained optimal control prob-
lem (OCP) is shown:

min
u
J (29a)

s.t. xk+1=F (x(k),u(k)) (29b)
x(0)=x0 (29c)
x(k)∈X (29d)
u(k)∈U (29e)

2.2.3 Comparison between LQR and MPC

The research from Varma et al. [11] compares different con-
trollers’ performances for trajectory tracking in autonomous
driving. First is longitudinal speed tracking, the graph be-
low shows the tracking performance for a reference speed
of 40 km/hr

Figure 13. Longitudinal Speed Tracking @40
km/hr from Varma et al. [11]

Rise time for MPC < LQR < PID and overshoot is also
very negligible for LQR and MPC, so it is obvious that MPC
performs better for Longitudinal Speed control. For lateral
steering control, the lateral position errors are analyzed and
compared for different controllers:

Figure 14. Lateral Trajectory Tracking from
Varma et al. [11]

Here it is also obviously that MPC performs better than
LQR.

2.2.4 Advantages and Disadvantages of MPC

The main advantage of MPC is its flexibility in achieving
complex goals and imposing constraints. However, it also
has some disadvantages such as high computational load in
the control process. The main weakness of MPC is the per-
formance highly depends on the detailed dynamics models.



Many parameters are needed for describing the model. In
these papers, the controlled plants are quadrotors and ve-
hicles, and the vehicles are simplified into bicycle models.
None of these models are really complex and do not have a
large number of parameters. What if the plant is far more
complex than vehicles and quadrotors and cannot be sim-
plified? It could take months or years to compute the corre-
sponding dynamic models. To solve this problem, the paper
Chen et.al [13] try to parameterize the complex system dy-
namics using deep neural networks to capturing complex
relationship. The overall methodology is shown below

Figure 15. Optimal Control via Neural Net-
works from Chen et.al [13]

Firstly, it ultilizes an input convex network model to
learn the system dynamics. Then to compute the best con-
trol decisions via solving a convex model predictive con-
trol problem. Comparing with previous controlling prob-
lem, here only the dynamics model is changed by using neu-
ral networks instead of Newton-Euler or Euler-Lagrangian
method.

2.3. Data-Enabled Predictive Control

2.3.1 Context [15]

Traditionally, control methods have been based on physi-
cal dynamic models, which have been expected to describe
the true underlying behavior of the system in a reason-
ably accurate representation. These descriptions, in com-
plex dynamic systems, are often highly elusive or non-
existent, hence the importance of using data-driven ap-
proaches. Data-driven models are based on data measure-
ments of the real system and require minimal prior knowl-
edge of the system. However, they require new control
strategies as classical analysis and synthesis tools cannot
handle probabilistic models.

The extensive field of data-driven control methods is
categorized into two areas: indirect data-driven control
approaches, consisting of sequential system identification

and model-based control, and direct data-driven control ap-
proaches, which seek an optimal decision suitable for the
input data. These approaches both have a rich history, and
they have received a renewed interest due to new methods
and widespread interest in machine learning. The advan-
tages and disadvantages of both paradigms have been com-
monly elaborated: the modeling and identification, in par-
ticular, is cumbersome, and the modeling results are often
not useful for control, since operators generally prefer the
end-to-end approaches. Whereas direct data-driven control
solve these problems by learning control policies directly
from data, but existing methods often are not suitable for
real-time and safety-critical applications, due to lack of cer-
tificates among other reasons.

Outline: in this section, the major focus is to solve the
control problem without the intermediate step of identifying
the system or estimating its state: the aim is a direct end-to-
end solution and is based on the DeePC algorithm. First, a
simple control problem, that will provide context for expla-
nations, will be stated. Afterwards, an introduction to the
bevahior approach is provided as it is a fundamental base
for the DeePC logic. The system is later formulated for an
MPC-based method, before being expressed in the DeePC
framework. Some practical examples and enhancements of
DeePC will be presented, as well as some outlook consider-
ations.

2.3.2 Literature review summary

The fundamental lemma of Willems et al. [16] shows that
all trajectories of a linear system can be obtained from a
given finite number of trajectories, this result is of practical
importance in the control of unstable systems by data. In
Coulson et al. [17], The authors consider the problem of
optimal path following for unknown systems. They present
a new data-driven predictive control (DeePC) algorithm that
computes optimal and safe control policies using real-time
feedback to drive the unknown system along a desired tra-
jectory while satisfying system constraints and relying on
Willems’ lemma. In Alpago et al. [18], the authors extend
DeePC to make use of additional available input-output data
for reducing the effect of noise. In Elokda et al. [19], the au-
thors study the application of DeePC for position control of
real-world nano-quadcopters. In Huang et al.[20], the au-
thors use DeePC in voltage source converter (VSC)-based
high-voltage direct current (HVDC) stations to achieve safe
and optimal control over a wide area for damping power
system oscillations.



2.3.3 Problem statement [17][19]

Consider the discrete-time system given by{
x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(30)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m,
and x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp are respec-
tively the state, control input, and output of the system at
time t ∈ Z≥0. Given a desired reference trajectory r =

(r0, r1, . . .) ∈ (Rp)
Z ≥ 0, input constraint set U ⊆ Rm,

output constraint set Y ⊆ Rp,
The objective is to apply control entries in order for the

system output to follow the reference trajectory r while sat-
isfying constraints and optimizing a cost function. In the
case where the model of the system is known, i.e. the ma-
trices A,B,C and D are known, the problem can be ap-
proached using the MPC (see section 2.2). Unless stated,
the theoretical problem considered in this section ( 2.3) is
this path-following problem in the case where the model of
the system is unknown, but where input/output data samples
are available. [17]

2.3.4 Non-parametric system representation [16][17]

The approach taken by the current state of the art is to use
a behavior viewpoint to be able to substitute the need for a
model or system identification process. The behavioral ap-
proach of systems theory starts from a deep but simple idea:
a dynamic system is a set of trajectories that the system can
express.This is done by defining Linear time-invariant (LTI)
systems as trajectory sets and constructing any controllable
trajectory of an LTI system using a finite number of data
samples generated by a sufficiently rich input signal. To do
this, they introduce the Hankel matrix which is itself a non-
parametric predictive model based on raw data and which
implicitly estimates the state of an LTI system.

Considering a Linear time-invariant system:

B(A,B,C,D) =
{
col(u, y) ∈

(
Rm+p

)Z≥0 | ∃x ∈ (Rn)
Z
≥0

s.t. σx = Ax+Bu, y = Cx+Du}.
(31)

Definition: A dynamical system is a 3-tuple
(Z≥0,W,B) where Z≥0 is the discrete-time axis, W
is a signal space, and B ⊆WZ ≥ 0 is the behaviour.

Definition: Let L, T ∈ Z > 0 such that T ≥ L. The
signal u = col (u1, . . . , uT ) ∈ RTm is persistently exciting
of order L if the Hankel matrix

HL(u) :=

 u1 · · · uT−L+1

...
. . .

...
uL · · · uT

 (32)

is of full row rank.
The term persistently exciting is intended to character-

ize an input signal sufficiently rich to excite the system and
generate an output sequence representative of the system’s
behavior

Each column of the Hankel matrix contains an in-
put/output trajectory of length L and by linearity of the sys-
tem, each linear combination of the matrix column is also
a trajectory of the LTI. In other words, the result of mul-
tiplying the Hankel matrix by any real vector g is a tra-
jectory expressible by the system. Furthermore, for Lin-
ear time-invariant systems under certain necessary and suf-
ficient conditions based on the rank of the Hankel matrix
of the data, this matrix can generate all the trajectories and
thus describe the system completely:

Theorem: Let Td, L ∈ Z>0. Let (ud, yd) =

{(ud(i), yd(i))}Td

i=1 be a trajectory of (30) of length Td such
that {ud(i)}Td

i=1 is persistently exciting of order L+n. Then
(u, y) = {(u(i), y(i))}Li=1 is a trajectory of if and only if
there exists g ∈ RTd−L+1 such that

(
HL (ud)
HL (yd)

)
g =

(
u
y

)
. (33)

2.3.5 MPC problem formulation[17]

Particular attention has been devoted to the problem of opti-
mal trajectory tracking, widely studied in model-based con-
trol. The model predictive control and estimation algorithm
for trajectory tracking when the system model is known is
given by considering the following optimization problem:

minimizeu,x,y
∑N−1
k=0

(
‖yk − rt+k‖2Q + ‖uk‖2R

)
subject to xk+1 = Axk +Buk,∀k ∈ {0, . . . , N − 1}

yk = Cxk +Duk,∀k ∈ {0, . . . , N − 1}
x0 = x̂(t)
uk ∈ U ,∀k ∈ {0, . . . , N − 1}
yk ∈ Y,∀k ∈ {0, . . . , N − 1}

(34)
where N ∈ Z>0 is the time horizon, u =

(u0, . . . , uN−1), x = (x0, . . . , xN ) , y = (y0, . . . , yN−1)
are the decision variables, and rt+k ∈ Rp is the desired
reference at time t + k, where t ∈ Z ≥ 0 is the time
at which the optimization problem should be solved. The
norm ‖uk‖R denotes the quadratic form uTkRuk (similarly
for ‖·‖Q ), whereR ∈ Rm×m is the control cost matrix and
Q ∈ Rp×p is the output cost matrix. The estimated state at
time t is denoted by x(t) and the predicted state and output
at time t + k are denoted by xk and yk, respectively. If the
entire state is measured then x̂(t) = x(t).



2.3.6 MPC Algorithm[17]

The classical MPC algorithm involves solving op-
timization problem (34) in a receding horizon manner.

Algorithm MPC
Input: (A,B,C,D), reference trajectory r, past input/output
data (u, y), constraint sets U and Y , and performance matri-
ces Q and R
1) Generate state estimate x̂(t) using past input/output
data.
2) Solve (34) for u? =

(
u?0, . . . , u

?
N−1

)
.

3) Apply inputs (u(t), . . . , u(t+ s)) = (u?0, . . . , u
?
s) for

some s ≤ N − 1.
4) Set t to t+ s and update past input/output data.
5) Iterate through Steps 1,4

2.3.7 DeePC problem formulation for deterministic
LTI systems [17][19]

Problem formulation Let Td, Tini ∈ Z>0 be the length
of data collection and the time horizon used for initial
condition estimation, respectively. Suppose (ud, yd) =

{(ud(i), yd(i))}Td

i=1 is a sequence of input/output measure-
ments collected during an offline procedure. Suppose fur-
ther that the input {ud(i)}Td

i=1 is persistently exciting of or-
der Tini + Tf + n. The input/output measurements are par-
titioned into Hankel matrices

(
Up

Uf

)
:= HTin+Tf

(ud),

(
Yp
Yf

)
:= HTini+Tf

(yd) ,

(35)
where Up consists of the first Tini block rows of

HTini+Tf
(ud) and Uf consists of the last Tf block rows of

HTini+Tf
(ud) (similarly for Yp and Yf ). The data in Up and

Yp will be used in conjunction with past data to perform im-
plicit initial condition estimation, and the data in Uf and Yf
will be used to predict future trajectories.

Let (uini, yini) = {(uini(t+ i), yini(t+ i))}−1i=−Tinin
be

the Tini most recent past input/output measurements from
the system. By Theorem described by the equation (33),
(u, y) = {u(t+ i), y(t+ i)}Ti−1

i=0 is a possible future trajec-
tory of (30) if and only if there exists g ∈ RTd−Tini−Tf+1

d

satisfying 
Up

Yp
Uf

Yf

 g =


uini
yini
u
y

 (36)

Each column of the Hankel matrix is a trajectory of the
system (motion primitive), and any new trajectory (right
side of (36)) can be computed by a linear combination of
these motion primitives. Hence, given an input sequence u
to be applied to the system, the first three block equations

of (36) can be solved for g, and the corresponding output
sequence is given by y = Yfg. The first two blocks of
equations in (36) are used to implicitly fix the initial con-
dition from which the future trajectory begins. In order to
uniquely define the initial condition from which the future
trajectory starts, they define Ttextini ≥ `, where ` is the de-
lay of the system (i.e., the length of time in the past required
to uniquely identify the current state of the system by back-
propagation of the dynamics (30)). This in turn implies that
the predicted trajectory given by y = Yfg is unique.

The Hankel matrix in (36) performs both state estima-
tion and prediction simultaneously, and thus can be used as
a predictive model for the system (30). Substituting (36) for
the unknown dynamics in the optimization problem yields
the following data-driven optimization problem, which cal-
culates the optimal control inputs without knowing the sys-
tem model:

Given a time horizon N ∈ Z > 0, a reference trajec-
tory r = (r0, r1, . . .) ∈ (Rp)

Z≥0 , past input/output data
col (uini, yini) ∈ BTini

, input constraint set U ⊆ Rm, out-
put constraint set Y ⊆ Rp, state cost matrixQ ∈ Rp×p, and
control cost matrix R ∈ Rm×m, the DeePC formulation is
as follows:

minimize
g,u,y

∑N−1
k=0

(
‖yk − rt+k‖2Q + ‖uk‖2R

)
subject to


Up

Yp
Uf

Yf

 g =


uini
yini
u
y

 ,

uk ∈ U ,∀k ∈ {0, . . . , N − 1},
yk ∈ Y,∀k ∈ {0, . . . , N − 1}.

(37)

2.3.8 DeePC algorithm for deterministic LTI systems
[17][19]

Algorithm DeePC
Input: col

(
ud, yd

)
∈ BT , reference trajectory r ∈ RNp,

past input/output data col (uini , yini ) ∈ BTini , constraint
setsU and Y , and performance matrices Q and R
1) Solve 37 for g?.
2) Compute the optimal input sequence u? = Ufg

?.
3) Apply input (u(t), . . . , u(t+ s)) = (u?0, . . . , u

?
s) for

some s ≤ N − 1.
4) Set t to t+ s and update uini and yini to the Tini most
recent input/output measurements.
5) Iterate through Steps 1, 4

2.3.9 Equivalence of DeePC and MPC for determinis-
tic LTI systems [17]

After introducing this new algorithm 2.3.8, it seems reason-
able to ask about its performance. For this purpose, DeePC
has been compared to MPC in several settings, the first one



being the deterministic LTI. Two aspects considered are the
comparative complexity and the trajectories obtained after
applying the control obtained by the 2 algorithms.

First, MPC has a considerable computational complex-
ity disadvantage because of the iterative computations at
each time step while a significant feature of the DeePC algo-
rithm is its simplicity. DeePC algorithm performs the sys-
tem identification, state estimation and trajectory prediction
with a single linear equation, which results in a quadratic
program with T − Tini − N + 1 number of decision vari-
ables where T ∈ Z>0 is the amount of data collected.

Second, regarding trajectories, it can be shown that Al-
gorithm 2.3.6 and Algorithm 2.3.8 give equivalent trajecto-
ries in closed loop under certain assumptions.

Corollary : (Equivalent Closed Loop Behaviour): Con-
sider a controllable LTI system B ∈ Lm+p with minimal
input/ouput/state representation B(A,B,C,D) given as in
30 . Consider the MPC and DeePC optimization problems
34 and 37 withQ � 0, R � 0, and U ,Y . Under persistently
exciting conditions (obtained by collecting a certain neces-
sary amount of data samples). Algorithm MPC and Algo-
rithm DeePC result in equivalent closed loop behaviour, i.e.,
the optimal control sequence u? and corresponding system
output y? at every iteration is identical

2.3.10 Regularized DeePC Algorithm [17][18]

Consider now the nonlinear discrete-time system given by{
x(t+ 1) = f(x(t), u(t))
y(t) = h(x(t), u(t), η(t))

(38)

where η(t) ∈ Rp is white measurement noise, and
f : Rn× Rm → Rn and h : Rn × Rm × Rp → Rp are
not necessarily linear. To apply the DeePC some modifica-
tions are made to 37 and lead to the following regularized
optimization problem:

minimize
g,u,y,σy

N−1∑
k=0

(
‖yk − rt+k‖2Q + ‖uk‖2R

)
+ λg‖g‖1 + λy ‖σy‖1

subject to


Ûp

Ŷp
Ûf

Ŷf

 g =


uini
yini
u
y

+


0
σy
0
0

 ,

uk ∈ U ,∀k ∈ {0, . . . , N − 1},
yk ∈ Y,∀k ∈ {0, . . . , N − 1},

where σy ∈ RTini p is an auxiliary slack vari-
able, λy, λg ∈ R>0 are regularization parameters, and

col
(
Ûp, Ŷp, Ûf , Ŷf

)
is a low-rank matrix approximation of

col (Up, Yp, Uf , Yf) .

Slack variable When the output measurements are cor-
rupted by noise, the constraint equation in 37 can become
inconsistent. Therefore, in 2.3.10, by including the slack
variable σy in the constraint, the feasibility of the constraint
is guaranteed at all times. The slack variable is penalized
with a weighted penalty function to a norm.

One-norm regularization on g The cost includes a
penalty to on the norm of g, favoring sparsity and thus se-
lecting only the most informative trajectories of noisy data
to predict future behavior.

Low-rank approximation By approximating the low-
rank matrix (via singular value decomposition (SVD)), the
most dominant sub-behavior is considered, resulting in a
data matrix describing the behavior of the nearest deter-
ministic LTI system. In the case of noisy measurements,
the SVD filters the noise. In the case of nonlinear dynam-
ics, SVD results in a matrix describing an approximate LTI
model, i.e., the most relevant infinitely dimensional elevator
basis functions, whose dimension can be chosen by adjust-
ing the SVD cutoff. The DeePC algorithm does not require
that the matrix col

(
Ûp, Ŷp, Ûf , Ŷf

)
have a Hankel struc-

ture.

Averaging Hankel Matrices: The output matrices Yp
and Yf are constructed offline from the trajectory
y0,T−1. Suppose that multiple T -long output trajectories
y
(1)
0,T−1, . . . , y

(N)
0,T−1 are available. Using those additional

data online to improve the prediction will lead to an in-
tractable optimization problem. However, the additional of-
fline paths can be used to construct N different Hankel ma-
trices H(1), . . . ,H(N) defined analogously to 35, and aver-
age those matrices to obtain the Hankel matrix.

HN :=
1

N

N∑
i=1

H(i)

The Law of Large Numbers guarantees that making use
of additional data to mitigate the effect of noise in the data-
driven model, hence reducing the risk of overfitting the
data-driven model, hence reducing the risk of overfitting
that would be present if the data was used directly in DeePC.

2.3.11 Applications [17][19][20]

Quadcopter In [17] and [19], the Regularized DeePC al-
gorithm was applied to a high-fidelity nonlinear quadcopter
model and compared to system identification (ID) followed
by MPC using the identified model.

The states of the quadcopter model are given by the 3
spatial coordinates (x, y, z) and their velocities, and the



3 angular coordinates (α, β, γ) and their velocities, i.e.,
the state is (x, y, z, ẋ, ẏ, ż, α, β, γ, α̇, β̇, γ̇). The inputs are
given by the thrusts of the 4 rotors, (u1, u2, u3, u4).

Figure 16. Perspective view (left) and top view
(right) of the quadcopter model used for sim-
ulation from Elodka et.al [19]

Data were collected from the nonlinear model subjected
to an additive white noise measure. They simulated the
ID system followed by the MPC algorithm and the reg-
ularized DeePC algorithm on a simulation in which the
quadcopter was commanded to perform a single-step tra-
jectory in (x, y, z) coordinates. The duration of the con-
straint violations and their cost were calculated. This
was repeated 30 times with different datasets to construct
col (Up, Yp, Uf , Yf), and different random seeds for the
measurement noise. The results are plotted in the his-
tograms below and show that DeePC consistently outper-
forms the identification-based MPC in terms of cost (fig 18)
and constraint satisfaction (fig 17).

Figure 17. Constraints histogram satisfaction
from Coulson et al. ([17])

Figure 18. Cost histogram from Coulson et al.
([17])

Power System Oscillation Damping In [20], the DeePC
algorithm was applied to VSC-HVDC stations to perform
centralized optimal control over a large area in order to mit-
igate low frequency oscillations and compared to identifica-
tion using a least-square multi-step prediction error method
(PEM) followed by MPC using the idenified model.

In particular, the DeePC algorithm was employed in a
VSC-HVDC link considering the dynamic interaction be-
tween two VSC-HVDC stations. The four-zone system has
weakly damped interzone oscillations due to the fast ex-
citers in the SGs and the long transmission lines. VSC-
HVDC station 1 performs active power control to regulate
the power flow of the DC link, and VSC-HVDC station
2 performs DC voltage control for the HVDC link. Both
VSC-HVDC stations apply phase-locked loops to synchro-
nize with the AC network and voltage control loops to reg-
ulate their terminal voltage. In general, the conventional
control structures of VSC-HVDC stations, as shown in the
figure 19, do not have enough control freedom to realize
the oscillation damping functionality, so auxiliary control is
required.

The simulations on DeePC and PEM-MPC were re-
peated 100 times with different data sets to construct the
Hankel matrices. The histogram in Figure 20 displays the
closed-loop costs from 10 s to 30 s. It shows that the DeePC
consistently achieves better closed-loop performance than
the PEM-MPC at certainty equivalence. This performance
gap is due to the fact that the PEM-MPC uses a nominal
model without any robustification. Both algorithms could
be further improved, however, for fairness the comparison
was between the baseline DeePC and the baseline PEM-
MPC.



Figure 19. One-line diagram of a four-area test system with integration of an HVDC link from Huang
et al. [20]

Figure 20. Cost comparison of DeePC and
certainty-equivalence PEM-MPC in terms of
closed-loop cost from 10s to 30s [20]

2.3.12 Outlook

An important consideration concerns the appropriate cir-
cumstances for using DeePC. The ID+MPC approach
projects the problem onto an LTI framework and estimates
the model in this space. It therefore leads to a smaller vari-
ance error if the system is LTI, but suffers from a large bias
error if it is not. DeePC provides no projection or denoising,
thus the bias error is lower but the variance error is higher
in the LTI case (no free lunch, noisier). Consequently,
although for a deterministic LTI the both algorithms are
equivalent, for a stochastic LTI, ID+MPC is worth consider-
ing and for a non-linear system, DeePC is an advantageous
alternative.

Finally, the biggest drawbacks with DeePC lies within
the case of collecting the data online or having too much
data. Indeed, if we have too much data to use, we aver-
age the Hankel matrix, but this method strongly exploits the
underlying linear structure of the problem (indeed, thanks
to the linear structure and the overlay, we can average the
Hankel matrices corresponding to different input trajecto-
ries and initial conditions). This attempt to exploit addi-
tional data to improve the performance of the algorithm
when dealing with stochastic systems, without increasing
the dimension of the optimization problem, seems to be
lacking as more data should have a greater influence in a
databased algorithm. Furthermore, for online deployment,
DeePC implicitly estimates the same multi-step prediction
model at each iteration, which adds significant additional
computational cost to its online application.

2.4. Stochastic Optimal Control

The optimal control theory defines the sum of paths of
a path cost and end cost. An optimised control sequence
and trajectory move the system under investigation to the
desired state. In these cases, the dynamics and environment
of the system may depend explicitly on time in a finite fixed
horizon optimal control system. Limited moving horizons
have static dynamics and environments, making it a time-
independent optimal control. Infinite horizons with average
rewards and absorbing states are optimal control problem
states fairly used.

When dealing with Optimal Control problems, some dis-



tinguishing factors should be made. Discrete-time vs con-
tinuous time should be identified, discrete state vs continu-
ous state should also be distinguished. Lastly, observable
and partially observable control problems can be charac-
terised [21]. The linear quadratic Gaussian control model is
a well-studied formulation in stochastic control. The model
is linear, the objective function is the expected value of a
quadratic form, and the disturbances are additive.

The best control solution for discrete-time centralized
systems with additive uncertainty is the same as it would
be without the additive disturbances. In relation to au-
tonomous systems, this can be applied to environmental
perturbations, unmodeled compliance, ground interactions
and battery charge fluctuations [22].

For systems defined by stochastic differential equations,
Markov chain approximation numerical methods [23] can
be used to compute optimal value functions and control. An
approximating process is generated by a controllable finite-
state Markov chain, then the Bellman equation is solved to
yield an approximating cost and control.

2.4.1 Framework for Autonmous Impedance Regula-
tion of Robots

Researchers have been trying to understand how the hu-
man regulates its arm impedance during task performance,
taking inspiration from human limb capabilities. [24] pro-
posed a 2D stiffness model with the assumption that end
arm stiffness has a linear relation to the magnitude of the
joint torques. Achieving autonomous interaction control of
robots needs the stiffness profile encoded offline and re-
produced online. A more efficient way to get this done is
through imitation learning. Here the use of Dynamic Move-
ment Primitives (DMPs)[25] is widely used to encode be-
haviours in robotics and human motor control scenarios.

Figure 21. Architecture of impedence con-
trolled by an imitation learning algorithm
(GMM/GMR) and an optimal control method
(LQR) [26]

Wu et al. proposed a framework that consolidates the
benefits of optimal control and Imitation Learning to real-

ize an optimal and adaptive interactive performance hav-
ing a generalization potential. Despite limited literature on
learning dynamics, it is common to see imitation learning
is widely used in modelling task kinematics. However, a
significant barrier is the challenge of physically meaningful
dynamics from human demonstrations.

2.4.2 Optimal Control for Multiple Mobile Robots
with Uncertainties [27]

A feedback control system has to be developed for an object
to move in the neighbourhood of the calculated optimal pro-
gram trajectory. This is done with the assumption that the
control system reduces motion errors. The numerical model
of an object not having a control system differs from the
same thing with a control system. A direct approach to op-
timal control can be used in controlling four mobile robots
that work interchangeably without collision. This involves
reducing the infinite-dimensional optimization problem of
optimal control to the finite-dimensional optimization prob-
lem of nonlinear programming.

Alternatively, an indirect method can be used to get this.
This is known as the synthesized optimal control that pro-
vides an initial solution to the problem by synthesizing a key
to stabilizing the system. In the initial step, it is essential to
form a multidimensional function with a state vector and
a couple of parametric argumentative vectors. The results
showed a clear advantage of using synthesized optimal con-
trol being deployed under direct supervision. Regardless of
the issues, this success was achieved because it occurs less
sensitive to existing uncertainties.

Figure 22. Synthesized approach optimal
trajectory[27].



Figure 23. Direct approach optimal
trajectory[27].

The consideration issue for a group of four mobile robots
was addressed using two ways (synthesized and direct), and
the behavior of the object model with the resulting controls
was investigated in the presence of errors in the model and
in the beginning circumstances, which were added as noise.
Specified figures were employed as parameter and constant
values, as well as a number f=of stabilization points for each
robot, throughout the execution of the tests. In order to
solve the challenge, the writers adopted a synthesized tech-
nique.

The control synthesis problem was initially handled us-
ing the symbolic regression approach of the network opera-
tor in order to produce a steady state for each robot. Because
the network operator approach was created to solve the syn-
thesis problem, it offers two distinct advantages.The syn-
thesis technique outperforms the direct approach in compli-
cated environments with dynamic and static phase limita-
tions, as shown in the charts (Fig.1-2).

2.4.3 Data-driven Approach to Prediction and Opti-
mal Bucket-filling Control in Autonomous Exca-
vators

In construction, the social and ezcavator bucket relation-
ship is non-linear making physcial modeling a challenge if
the excavation steps are being automated. Sandzimier et al.
proposed a data-driven statistical model based on measure-
ments and laboratory experiments. This contributed to the
development of an optimal control algorithm for switching
through the excavation phases with ease.

Figure 24. The three phases of an excavation
cycle that can be automated are the bukcet
penetrating the soil, dragging the soil and
scooping the soil up[28].

Experiential operators often fill buckets to 80% capacity
in order to reduce cycle time and increase fuel efficiency.
Hence, scooping the desired amount of soil is a crucial re-
quirement for automatic excavators.Bernold et al [29] pro-
posed a force feedback and impedance control as effective
methods for controlling the path of the bucket as it drags
through soil. This work mainly examines how to control
the bucket during the drag phase.

2.4.4 Energy- Aware Optimal Control of Variable
Stiffness[30].

Variable stiffness actuated (VSA) robots, as well as their
generalization to Variable Impedance Actuation (VIA), pro-
vide a novel design paradigm aiming primarily at improving
safety in physical human-robot interaction and human-level
job execution performance. The major problem in energy-
aware optimum robotic system control is to propose ap-
proaches that can be applied to a wide range of robot topolo-
gies while being simple to implement. As a result, this lies
in the description of the framework for energy-aware mo-
tion planning of VSA robots based on numerical optimum
control, which can be designed using state-of-the-art soft-
ware tools for optimal control and is in principle applicable
to any VSA robot topology.

The use of position-controlled servomotors to activate
the nonlinear elastic components in VSA robots is studied
in [31] [32].This enables for direct analysis and control of
the system’s energy usage, but also necessitates changes to
the previously considered models.

To develop distinct sorts of OCPs, a state-space model
of the total system will be used.VSA systems, like other
passive or quasi-passive techniques, are quite likely to help
robots save energy.The issues raised have to do with en-
ergy usage during job execution. P(t), the robot’s power
consumption at a particular time instant t, is calculated by
adding the power consumption of all motors, each of which
is affected by both control inputs (motor currents) and sta-



tus variables.The purpose of the second type of OCP is to
reduce the amount of energy used to complete the activity
while maintaining an acceptable target performance.

Figure 25. The variation of system stiffness
as a function of Mechanical Power[30].

A direct numerical technique was used to solve the spec-
ified OCPs. The time period T was uniformly split into
intervals using the ACADOToolkit [33], and the temporal
evolution of the problem variables was discretized using a
fourth-order Runge-Kutta integrator with a timestep. The
resultant discrete-time OCP is then solved using a simul-
taneous method yielding a nonlinear program that is sub-
sequently solved using the active-set QP solver qpOASES
[34].

In Fig: 25, three scenarios of mechanical power are il-
lustrated. As a function of time, the variation in joint stiff-
ness(MPLE, TPME, MPME). TPME is for d = 2m and T = 2
s, whereas MPME is = 0.04 m. The findings show that mini-
mizing energy consumption involves robot operation in low
stiffness mode (TMPE), but achieving goal performance re-
quired high joint stiffness.

2.4.5 State Suprema Optimal COntrol in Differential
Systems

This paper[35] investigates an efficient and practical algo-
rithm based on the motion of a car-like robot using curves
and straight lines to find junction points, then using optimal
control theory to generate the desired optimal path vector
points using only the robot’s initial and final positions, and
finally a non-linear control strategy based on feedback lin-
earization to verify that the robot can follow this optimal
path using positive and negative velocity

Remember that differential equations with the sup-
operator on the right hand sides of the FDEs imply delayed

differential equations. The state-dependent delays in the re-
sultant dynamic models are sophisticated (implicit). In the
presence of state-dependent delays, the resulting mathemat-
ical procedures are insufficiently advanced to OCPs linked
with differential equations. The same result holds true for
OCPs in systems that evolve with state suprema.

3. Conclusion

3.1. Conclusion for LQR

LQR has become an important method in optimal con-
trol problems. The LQR controller is easy to design and
only two matrices are enough to achieve steady-state con-
trol. Even for nonlinear systems, it can be solved by de-
signing a controller with local linearization. The parameter
selection, as described above, can be obtained automated
by combining it with advanced algorithms. As a basic con-
trol method, LQR is essentially to design a feedback gain
matrix K. In addition to the realization of the LQR con-
troller, it is a major research direction to combine it with
other methods. For example, efficient control can be im-
plemented by combining LQR with the MPC (Model pre-
dictive control) method and Neural Network [36]. And a
data-driven LQR controller, which means combining LQR
with Markov methods, is also popular [37].

3.2. Conclusion and Outlook for MPC

MPC can incorporate more precise dynamics and con-
straints and be applied in real-time applications because the
environment is dynamic and stochastic. With the successes
in the field of machine learning and neural networks, the
combination or integration with MPC and learning method
such as Reinforcement Learning has received substantial.
interest in recent years. Like the previous paper from Chen
et.al [13], the learning method can be implemented in model
describing. It also can be implemented into controller de-
sign since the controller also has a lot of parameters such as
penalty parameters.

3.3. Conclusion for DeePC

In the section 2.3, a data-driven algorithm [15] that can
be applied to unknown LTI systems has been presented and
its equivalence to the classical MPC algorithm has been ex-
plicitly stated. This algorithm uses a finite set of data to
learn the behavior of an unknown system. For example,
it can compute optimal commands using real-time perfor-
mance feedback to guide a system along a desired trajectory
while respecting system constraints. In addition, a regular-
ized version of the algorithm was introduced and success-
fully rivaled the stochastic nonlinear dynamics of the quad-



copter, illustrating its capabilities beyond deterministic LTI
systems. The performance was superior to that of the ID
system followed by the MPC.[16][17] We then introduced
an extension of the data-based predictive control algorithm
to handle control problems on unknown stochastic LTI sys-
tems, using additional data without increasing the dimen-
sion of the optimization problem to be solved at each iter-
ation via offline averaging of multiple Hankel matrices to
obtain a cleaner data-based model.The performance of the
proposed method has been experimentally validated on a
stochastic LTI system showing improvements over the stan-
dard DeePC [18]. We then mentioned an application of the
regularized DeePC algorithm that shows that it is suitable
for real-time control of a real-world quadcopter, thus bridg-
ing the gap between theory and practice. Through this real-
world implementation, it has been shown that the DeePC
algorithm is computable and can be adequately solved in
real time, with resolution times well below the requirements
of real time [17] [19]. We also mentioned another appli-
cation of the DeePC algorithm as a model-free approach
to perform large-scale optimal control based solely on the
measured input/output trajectories of the unknown system
to predict future behaviors. In the stated context of power
systems, DeePC leverages the high control capability and
flexibility of VSCHVDC stations to mitigate low frequency
oscillations. [20]

DeePC, unlike MPC, is very novel and each improve-
ment is showing some promising results, therefore it is a
subfield that warrants great consideration.

3.4. Conclusion for Stochastic Optimal
Control

Designing stable systems that meet task needs is a basic
requirement of autonomous robotics. The contributions in
Section 2.4 studied Stochastic Optimal Control with asso-
ciated problems. These solutions can be applied to societal
challenges in smart mobility, healthcare, manufacturing and
many more.

The effectiveness of all proposed solutions and frame-
works reviewed has been evaluated by conducting com-
parative experiments and making sound assumptions based
on scanned literature. Results provide evidence of the im-
portance of the superior performance of stochastic Optimal
control strategies in autonomous systems in generating de-
sired trajectories, efficient execution of tasks and proper uti-
lization of system resources.

4. Contributions

Xingyu Song: Chapter 1 + Section 2.1 + Section 3.1
Zehua Zhang: Section 2.2 + Section 3.2
Hanady Gebran: Section 2.3 + Section 3.3

Yaw Obeng Okofo Dartey: Section 2.4 + Section 3.4
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