
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

The impact of pooling paradigms on
quantum convolutional neural networks

Hanady Gebran

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

The impact of pooling paradigms on
quantum convolutional neural networks

Die Auswirkungen von Pooling-Paradigmen
auf Quanten Faltungsneuronale Netze

Author: Hanady Gebran
Supervisor: Prof. Dr Christian Mendl
Advisor: PD Dr. habil. Jeanette Miriam Lorenz and Maureen Monnet
Submission Date: 15.06.2023

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 15.06.2023 Hanady Gebran

Abstract

Quantum machine learning is an emerging field that combines quantum computing and
machine learning to harness the power of quantum phenomena, such as superposition,
entanglement, and interference, to achieve speedups or improvements over classical
computing for certain computational problems.

Efforts to date show that for many of the proposed quantum models, we have promis-
ing results in their specific domains, with theoretical studies showing that quantum
variants of classical machine learning algorithms can provide good generalization from
small training data.

However, there are no strong theoretical ideas about what makes one quantum circuit
design better than another, and comparative studies between quantum equivalents
have not been performed for all types of classical layers or techniques crucial to
classical machine learning. In particular, the pooling layer within convolutional neural
networks is a fundamental operation that remains to be explored. Pooling mechanisms
significantly improve the performance of classical machine learning algorithms by
playing a key role in reducing input dimensionality and extracting eigenfeatures from
the input data.

This thesis proposes hybrid quantum-classical convolutional neural networks (QCC-
NNs) with parameters comparable to those of classical convolutional neural networks
and examines the potential application of quantum machine learning in medical imag-
ing classification tasks. These tasks often have limited training data, making it difficult
to reliably classify specific diseases such as potentially cancerous lesions.

An in-depth study of pooling techniques in QCCNNs for 2D medical image classifi-
cation is performed. The performance of three different quantum and hybrid pooling
techniques are investigated: mid-circuit measurements, ancillary qubits with controlled
gates, and qubit selection with classical post-processing.

By simulating this network with a classical computer using the pennylane framework,
we find similar or better performance compared to an equivalent classical model and
a QCCNN without pooling and conclude that it is promising to study architectural
choices in QCCNNs further for future applications.

iii

Zusammenfassung

Das maschinelle Quantenlernen ist ein aufstrebendes Gebiet, das Quanteninformatik
und maschinelles Lernen kombiniert, um die Stärke von Quantenphänomenen wie Su-
perposition, Verschränkung und Interferenz zu nutzen, um bei bestimmten Rechenprob-
lemen Beschleunigungen oder Verbesserungen im Vergleich zur klassischen Informatik
zu erzielen.

Die bisherigen Bemühungen zeigen, dass wir für viele der vorgeschlagenen Quanten-
modelle vielversprechende Ergebnisse in ihren spezifischen Bereichen haben, wobei
theoretische Studien zeigen, dass Quantenvarianten von klassischen Algorithmen des
maschinellen Lernens gute Verallgemeinerungen aus kleinen Lerndaten liefern können.

Es gibt jedoch keine starken theoretischen Ideen darüber, was ein Quantenschal-
tungsdesign besser als ein anderes macht, und vergleichende Studien zwischen Quan-
tenäquivalenten wurden nicht für alle Arten von klassischen Schichten oder Techniken
durchgeführt, die für das klassische maschinelle Lernen entscheidend sind. Insbeson-
dere die Pooling-Schicht innerhalb von gefalteten neuronalen Netzen ist eine grundle-
gende Operation, die noch erforscht werden muss. Pooling-Mechanismen verbessern
die Leistung klassischer Algorithmen des maschinellen Lernens erheblich, da sie eine
Schlüsselrolle bei der Verringerung der Dimensionalität der Eingabe und der Extraktion
eigener Merkmale aus den Eingabedaten spielen.

Diese Dissertation schlägt Quantum-Classic Hybrid Convolutional Neural Networks
(QCCNN) mit Parametern vor, die mit denen klassischer Convolutional Neural Net-
works vergleichbar sind, und untersucht die potenzielle Anwendung von Quantum
Machine Learning bei Klassifikationsaufgaben in der medizinischen Bildgebung. Diese
Aufgaben verfügen oft über begrenzte Lerndaten, was die zuverlässige Klassifizierung
spezifischer Krankheiten, wie z. B. potenziell krebsartiger Läsionen, erschwert.

Es wird eine eingehende Untersuchung von Pooling-Techniken in QCCNN zur
Klassifizierung von medizinischen 2D-Bildern durchgeführt. Die Leistung von drei
verschiedenen Quanten- und Hybrid-Pooling-Techniken wird untersucht: Messungen
in der Mitte des Schaltkreises, Ancillary-Qubits mit kontrollierten Gattern und Qubit-
Auswahl mit herkömmlicher Nachbearbeitung.

Bei der Simulation dieses Netzwerks mit einem klassischen Computer unter Ver-
wendung des Pennylane-Rahmens finden wir eine ähnliche oder bessere Leistung im
Vergleich zu einem äquivalenten klassischen Modell und einem QCCNN ohne Pooling

iv

Zusammenfassung

und kommen zu dem Schluss, dass es vielversprechend ist, die architektonischen
Entscheidungen in QCCNNs für zukünftige Anwendungen genauer zu untersuchen.

v

Contents

Abstract iii

Zusammenfassung iv

1 Introduction 1

2 Introduction to deep learning in radiological imaging 3
2.1 Machine learning and deep learning . 3
2.2 Convolutional Neural Networks . 4

2.2.1 High level overview . 4
2.2.2 Architecture and training . 6
2.2.3 Loss landscape and accuracy . 7
2.2.4 Convolution layer . 8
2.2.5 Pooling layer . 9

2.3 Application in radiological imaging . 10

3 Introduction to quantum computing 12
3.1 Quantum bits . 12

3.1.1 Multiple qubits . 13
3.2 Quantum computation . 15

3.2.1 Single qubit gates . 15
3.2.2 Multiple qubit gates . 16
3.2.3 Common one-qubit and two-qubits gates 18

3.3 NISQ devices . 19
3.4 Quantum Machine Learning . 20

3.4.1 Quantum Data Encoding . 21
3.4.2 Trainable variational circuits layer 22
3.4.3 Quantum measurement . 22
3.4.4 Classical Optimization Loop . 23
3.4.5 The Effective Dimension: A Measure of Model Complexity . . . 24

4 Quantum classical convolutional neural networks: SOTA and motivation 25
4.1 QCNN architecture . 25

vi

Contents

4.2 QCCNN architecture . 27

5 QCCNNS with a quantum pooling layer 29
5.1 Motivation . 29
5.2 Experimental Setup . 30

5.2.1 Dataset . 30
5.2.2 Pennylane . 31

5.3 Problem statement . 31
5.4 Pooling methods . 33

5.4.1 Mid circuit measurement . 33
5.4.2 Ancilla qubit and controlled gates 35
5.4.3 Qubit selection with classical postprocessing 39
5.4.4 Modular quantum pooling blocks 40

6 Results and quantum metrics 43
6.1 Classical CNN and QCCNN baseline . 43
6.2 Mid-circuit measurement . 44

6.2.1 Accuracy and loss . 44
6.2.2 Quantum weights . 46
6.2.3 Loss landscape . 48
6.2.4 Effective dimension . 52

6.3 Ancilla qubit and controlled gates . 53
6.3.1 Accuracy and loss . 53
6.3.2 Effective dimension . 55

6.4 Qubit selection with classical postprocessing 55
6.4.1 Accuracy and loss . 55
6.4.2 Effective dimension . 57

6.5 Modular quantum pooling blocks . 58
6.5.1 Accuracy and loss . 58
6.5.2 Effective dimension . 60

6.6 Comparison of the best models . 60
6.6.1 Accuracy and loss . 60
6.6.2 Effective dimension . 62

7 Conclusion and further work 64

List of Figures 66

List of Tables 69

vii

Contents

Bibliography 70

viii

1 Introduction

Machine learning is a form of artificial intelligence (AI) that aims to create systems that
learn or improve their performance based on the data they process. Some of the areas
where machine learning is becoming increasingly prevalent include science, healthcare
(the subject of this thesis), education, manufacturing (e.g. damage detection), financial
modelling (future profits), cybersecurity, data governance and even marketing. This
can result in significant time savings and enable tasks that would otherwise require
extensive specialisation. For example, doctors may need years of study to detect
diseases, but machine learning can help them with this task. [Mit97]

One of the most notable and influential subfields of machine learning is deep learning,
which uses multiple layers of artificial neural networks. This learning often requires
massive databases of information to be trained. Deep learning has achieved promising
results in image, video, speech and audio processing with deep convolutional neural
networks, and in modelling sequential data such as text and speech by using recurrent
networks [Bro+21]. With their impressive efficiency and performance, the field of
research is very dynamic. [GBC16][LBH15]

Deep Convolutional Neural Networks (DCNNs) are one of the most common and
widely used varieties of recurrent networks. In the past, feature engineering required
human intervention, whereas today DCNNs have multiple layers of neurons that
apply local filters to the input data and create feature maps that capture the relevant
information. They therefore learn without human supervision or prior knowledge,
which makes them effective for image recognition tasks [KSH12]. The hierarchical
structure of the human visual system inspired the idea of DCNNs and, since their
introduction in the 1980s, they have achieved peak performance in various computer
vision tasks, such as object detection, segmentation, tracking, face recognition, etc.

Quantum computing is an emerging technology that uses quantum bits (qubits)
and can hence exploit the advantages of quantum phenomena, such as entanglement,
superposition, and interference, to achieve speed-ups or improvements over classical
computing for certain computational problems. For example, quantum computing can
help solve cryptographic problems that are difficult or impossible to solve with classical
computing. Factorization problems, in particular, are excellent examples of problems
that can be solved with a quantum computer [DR22]. Although some reservations are
expressed as to whether the idea of "beating" classical machine learning with quantum

1

1 Introduction

gain should continue to dominate the literature [SK22b], the hope is that QC can
improve AI systems, which would ultimately combine two of the most currently active
topics [NC00].

Indeed, by using quantum parallelism or interference effects, QC could process
smaller datasets and discover new patterns in the data that otherwise might be hidden
or inaccessible to conventional algorithms, which is important given the frequent lack
of labeled data for supervised learning. It may also achieve better results with fewer
learning steps as good generalization is guaranteed from few training data [Car+22a].

In theory, QC has already shown its potential for several use cases. However, current
noisy intermediate-scale quantum computers (NISQs) have a limited number of O(100)
qubits, with limited connectivity and gate fidelities. As a result, some of the most
interesting algorithms developed are still far from being accessible. For example,
Shor’s algorithm can efficiently factor large numbers on a quantum computer, breaking
some widely used public key cryptosystems due to the hardness of the factoring
problem. However, breaking the current 2048-bit RSA key requires a circuit of about
4000 logical qubits, knowing that with error correction, 60 physical qubits are equivalent
to about 1 logical qubit, for this use case we would need a NISQ computer of about
O(100000) qubits. Therefore, in the near term, hybrid QML algorithms, which use
a limited number of qubits, are one of the most promising use cases for QC. These
algorithms involve iterative interactions between classical and quantum computers,
taking advantage of their respective strengths.

In Section 2, the basics of machine learning and convolutional neural networks
are reintroduced. In Section 3, quantum computing and some of its applications
to machine learning are discussed. In Section 4, the focus is on quantum-classical
convolutional neural networks (QCCNN) and the gaps in the literature that this thesis
aims to fill. In Section 5, an experimental setup using QCCNN with comparable
parameters is presented and the approaches using 1) mid-circuit measurements, 2)
auxiliary qubits with controlled gate operations, and lastly 3) qubit selection with a
non-linear classical postprocessing function are explained.In Section 6, the performance
of all tested quantum data pooling architectures is presented and interpreted, and the
correlation between the effective dimension and learning performance is investigated.
In Section 7, the thesis is concluded and future work in the field of quantum machine
learning is discussed.

2

2 Introduction to deep learning in
radiological imaging

2.1 Machine learning and deep learning

Deep learning is a subset of machine learning that uses artificial neural networks
(ANNs) inspired by the structure of the brain itself. ANNs consist of interconnected
processing nodes that receive inputs from other neural nodes and calculate a weighted
sum of the inputs. This sum is often passed through an activation function to determine
the response of the neural node. The connection weights between neurons are adjusted
by backpropagation to minimize the error between the expected and actual results
[Bro+21] [GBC16] [JZH21].

A single layer Artificial Neural Network (ANN) has a limit on the number of
input representations it can handle. This is why deep neural networks (DNNs) were
introduced. DNNs are composed of several layers, and while each individual layer
does not have much complexity or discriminating power, the combination of several
layers allows a high level of pattern recognition to be achieved. In fact, in this type of
architecture, each layer corresponds to a different level of abstraction: the lower levels
learn simple features such as lines or circles, and the higher levels learn more complex
features such as noses, hair or lips. The advantage of this approach is that engineers do
not need to hard-code the relevant features to accomplish the task at hand, as it is the
different levels of abstraction that generate the correct discriminating feature sensors to
predict the class of an image. As manual feature engineering is minimal here, the use
of such an architecture has quickly become popular and widespread. However, training
DNNs usually presents some difficulties such as over-fitting, gradient explosion, class
imbalance and the need for large datasets.

While DNNs have achieved state-of-the-art performance in many applications, they
have some limitations. One of the main ones is their poor ability to generalize and
extrapolate beyond the training data. They also rely heavily on large amounts of
labeled data, making them extremely data-dependent and unsuitable for applications
where data availability is limited. These models also have difficulty operating in open
environments, adapting to outliers, perceiving hierarchical structures, distinguishing
between correlation and causation, and providing meaningful explanations for their

3

2 Introduction to deep learning in radiological imaging

decisions. Finally, deep neural networks lack the capacity for ontological inference, an
essential ability to understand abstract concepts [Tsi20].

Figure 2.1: Machine learning= Shallow machine learning + Deep learning [JZH21]

2.2 Convolutional Neural Networks

2.2.1 High level overview

A CNN replicates the visual cortex’s simple and complex cells, which respond to local
edges, directions, and more complex patterns and shapes, to learn increasingly complex
features from input images [AG17]. CNNs outperform other neural networks when
given inputs such as images, speech, or audio, which sets them apart from other neural
networks.

Convolutional, pooling, and fully-connected (FC) layers are the three primary types
of layers used in CNNs. The convolutional layer is the first layer of a convolutional
network and the fundamental building block, where the majority of computation takes
place. A pixel matrix makes up the input data. The feature detector, also known as a
kernel or filter, moves across the image’s receptive fields and looks to see if the feature
is present. A feature hierarchy is produced in the CNN by the fact that the later layers
can see the pixels in the earlier layers’ receptive fields.

4

2 Introduction to deep learning in radiological imaging

Figure 2.2: Visual representation of a convolutional layer [Sta23].

The pooling layer is a subsampling operation typically applied after a convolutional
layer. In particular, the most popular types of pooling are max and average pooling,
where the maximum and average values are taken, respectively.

Figure 2.3: Visual representation of a max pooling layer and an avg pooling layer
[Sta23].

A feature map, which is the convolution’s output, is passed through the ReLU
activation function to add nonlinearity. ReLU : g(z) = max (0, z)
The final layer of a CNN is the fully-connected layer. Its name refers to the fact that
every neuron in the layer is linked to every neuron in the layer above. The fully-
connected layer, which maps the extracted features to the desired output, receives
flattened and fed output from the final pooling layer.

5

2 Introduction to deep learning in radiological imaging

Figure 2.4: Visual representation of a fully connected layer [Sta23].

Recent developments in CNNs include the use of attention mechanisms to help the
network focus on task-specific areas of input images and residue connections to learn
residue features that capture the difference between an input and an output of a layer.
Because they are able to learn hierarchical representations of input images, process
high-dimensional inputs, and recognize complex features in images, CNNs are effective
tools for computer vision tasks.

2.2.2 Architecture and training

A convolutional neural network (CNN) typically accepts as input a three-dimensional
tensor, typically an image with dimensions H rows, W columns, and 3 channels (R, G,
B). The input is then subjected to a sequential chain of calculations.

x1 −→ w1 −→ x2 −→ xL−1 −→ wL−1 −→ xL −→ wL −→ z

The input is processed in the initial layer. The tensor w1 represents the parameters
involved in processing the first layer. The result of the first layer is denoted by x2, which
simultaneously serves as the input for the processing of the next layer.

This sequential processing continues until all layers of the CNN have been traversed,
resulting in the xL. Assuming that the given problem concerns image classification
involving C classes, it is usual to present xL as a C dimensional vector. The i-th entry
of this vector encodes the posterior probability that x1 belongs to the i-th class. To
transform xL into a probability mass function, the treatment in the (L− 1)th layer can
be performed as a softmax transformation of xL−1.

The last layer is called the loss layer. Suppose that t represents the corresponding
target value (ground truth) for the input x1. In this context, a cost or loss function can

6

2 Introduction to deep learning in radiological imaging

be used to evaluate the dissimilarity between the CNN prediction xL and the target
value t. For example, a simple loss function could be defined as follows:

z =
1
2

∥∥∥t− xL
∥∥∥2

In the case of a classification problem, cross-entropy loss is often used. In such a
scenario, the ground truth is represented by a categorical variable t. This categorical
variable t is then transformed into a C dimensional vector t. At this stage, t and xL

both take the form of probability mass functions, with the cross-entropy loss serving as
a measure of dissimilarity between them. Therefore, minimising the cross-entropy loss
allows the CNN to be formed efficiently.

The parameters of the CNN model are optimized to minimize the loss function z
and match the desired labels. Learning consists of going through the network to obtain
predictions and comparing them to the targets to calculate the loss. The parameters
are updated gradient descent methods that adjusts the parameters based on the partial
derivative of the loss after each parameter. By updating the parameters in the opposite
direction of the gradient, the loss function is minimized. Suppose all the parameters of
a CNN model w1, . . . , wL−1 have been learned, we can output the CNN prediction as
argmaxixL

i [Wu17].

2.2.3 Loss landscape and accuracy

The loss landscape of a deep neural network refers to the multidimensional structure
of the loss function that minimizes the network during learning. The loss function,
represented by f (θ), compares the network’s expected output to the actual output
and is generally non-convex, which means it has many minima and can be difficult to
optimize [Li+18][ZLZ21]. Despite the complexity of the loss function, neural networks
are often able to identify optimal minimizers that achieve high accuracy on training
and test data. Current research has focused on understanding the shape of the loss
landscape and its impact on the optimization process. The loss landscape can have
various characteristics such as: flat regions, steep cliffs and narrow valleys, which can
affect the optimizer’s ability to find good solutions.

7

2 Introduction to deep learning in radiological imaging

Figure 2.5: Comparative plot of loss landscape regions: chaotic vs smooth. [Tho]

2.2.4 Convolution layer

In the convolution layer, using multiple convolution kernels is standard. Assuming the
use of D kernels, each having a spatial dimension of H×W, the collective representation
of these kernels can be denoted as f . Represented as an order 4 tensor in RH×W×Dl×D

and encompasses the attributes of the kernels.
As illustrated in Figure 2.2, the spatial dimensions of the output are smaller compared

to those of the input, especially when the convolution kernel size exceeds 1× 1. Given
an input size of Hl ×W l × Dl and a kernel size of H ×W × Dl × D, the resulting
convolution yields a size of

(
Hl − H + 1

)
×

(
W l −W + 1

)
× D.

Stride, an equally significant concept in convolution, dictates the movement of the
convolution process. As depicted in Figure 2.2, the kernel convolves with the input at
every possible spatial location, corresponding to a stride value of s = 1. However, when
s > 1, the kernel skips s− 1 pixel locations with each movement, leading to the creation
of y (or xl+1) in RHl+1×W l+1×Dl+1

, where Hl+1 = Hl − H + 1, W l+1 = W l −W + 1, and
Dl+1 = D.

Hence, the convolution process can be expressed as the following equation:

yil+1,jl+1,d =
H

∑
i=0

W

∑
j=0

Dl

∑
dl=0

fi,j,dl ,d × xl
il+1+i,jl+1+j,dl .

[Wu17].

8

2 Introduction to deep learning in radiological imaging

2.2.5 Pooling layer

The pooling layer addresses concerns such as overfitting, computation time, and
recognition accuracy. It performs a downsampling operation on the feature maps,
extracting relevant information while discarding irrelevant details. There are different
types of pooling methods commonly used in CNNs, including max pooling and average
pooling.

In the pooling layer, the input xl ∈ RHl×W l×Dl
is processed channel by channel

independently. The spatial extent of the pooling, specified by the dimensions H×W, is
determined during the design of the CNN structure. The most commonly used setup
is H = W = 2 with a stride of 2. Assuming that H divides Hl and W divides W l , and
the stride equals the pooling spatial extent, the output y (or equivalently xl+1) of the
pooling layer will be an order 3 tensor of size Hl+1 ×W l+1 × Dl+1, where

Hl+1 =
Hl

H
, W l+1 =

W l

W
, Dl+1 = Dl

The pooling operation divides the Hl ×W l matrix within each channel into non-
overlapping subregions of size H ×W. Each subregion is then mapped to a single
number using a pooling operator [Wu17].

In max pooling, the pooling operator maps a subregion to its maximum value, while
the average pooling maps a subregion to its average value. Precisely,

Max Pooling:
yil+1,jl+1,d = max

0≤i<H,0≤j<W
xl

il+1×H+i,jl+1×W+j,d

Average Pooling:

yil+1,jl+1,d =
1

HW ∑
0≤i<H,0≤j<W

xl
il+1×H+i,jl+1×W+j,d

Here, 0 ≤ il+1 < Hl+1, 0 ≤ jl+1 < W l+1, and 0 ≤ d < Dl+1 = Dl .
Max pooling selects the maximum value within each pooling subregion, providing

translation invariance and reducing the dimension of intermediate feature maps. On the
other hand, average pooling calculates the average value of each subregion, providing
a downscaled representation of the input. Pooling can also be performed on overlap-
ping regions, which can be beneficial in situations where weak spatial information
surrounding dominant regions is useful [Anw+18].

The pooling layer’s primary objectives are to reduce the number of parameters, thus
minimizing computational overhead and avoiding overfitting. By extracting important
information and discarding irrelevant details, pooling assists in transforming general
feature descriptions into actionable information. The choice of pooling method is

9

2 Introduction to deep learning in radiological imaging

crucial in solving computer vision challenges since it aims to capture meaningful
representations of combined visual features obtained through convolution.

2.3 Application in radiological imaging

Convolutional neural networks revolutionized medical imaging by enabling fast and
precise identification of abnormalities in various medical images [ZS19]. CNNs could
surpass or match human radiologists in detecting lung nodules, breast cancer, and
brain tumors, thereby increasing productivity and advancing medical imaging tech-
nologies.The scope of this thesis is on the breast cancer detection application.This topic
is prominent as it is a global challenge, given that this type of cancer is common and
affects 10% of women globally. Early detection and prompt treatment are critical in
improving the chances of survival [Kly+14]. One of the most effective techniques for
detecting breast cancer in its early stages is radiological imaging, such as mammogra-
phy. Mammography can identify small calcifications and masses that may be indicative
of cancer, making it a highly effective technique for breast cancer detection [SK22a].

Figure 2.6: Mammography dataset [Ya21][Aa20].

In the domain of radiological imaging, the widespread adoption of convolutional
neural networks faces numerous challenges that need to be addressed.

One significant obstacle is the interpretability of CNN predictions. Despite their
impressive performance, CNNs often generate results that are difficult to comprehend
and trust. This lack of transparency impedes their application in critical scenarios, as
healthcare professionals such as clinicians and radiologists require explanations and
insights to confidently rely on CNN outcomes [Pre+19]. To overcome this challenge
and enhance the accuracy and interpretability of CNNs in radiological imaging, re-
searchers are actively exploring innovative solutions. One such approach is "pruning
by explanation," which draws inspiration from the field of explainable artificial intel-
ligence (XAI). This method aims to identify the most relevant components within a
CNN by assigning relevance scores based on concepts from XAI. By eliminating the

10

2 Introduction to deep learning in radiological imaging

less relevant components, the model can be streamlined and made more interpretable
without compromising its performance. Furthermore, intrinsic XAI models, including
Interpretable CNN, CNN Explainer, XCNN, and FCM, have been developed to improve
the interpretation of CNNs. These models incorporate additional elements such as loss
functions, autoencoders, cluster algorithms, and decision trees to provide interpretable
insights into the decision-making process of CNNs. However, caution must be exercised
when integrating these XAI models into critical applications like medical diagnosis,
as the introduction of these components may impact the overall accuracy of CNN
classification [IS23].

Another issue, though less prevalent in medical imaging CNNs, is intentional ma-
nipulation of input data aimed at deceiving CNNs and causing misclassification. A
promising strategy to mitigate such attacks is training with perturbed samples. By
combining a convolutional denoising autoencoder with a classifier, a defensive structure
can be constructed to enhance the CNN’s robustness and reliability. This allows the
model to learn to differentiate between genuine and perturbed samples, thus reducing
its vulnerability to negative attacks [AK22].

Furthermore, one of the major challenges in medical image classification is the lack
of sufficient data, expert commentary, high imaging costs, and data privacy concerns.
As a result, there is a limited availability of large, comprehensive, and high-quality
datasets in radiology. This scarcity makes it difficult to effectively train and evaluate
convolutional neural networks in this domain. In the work of [Car+22b], it has been
shown that certain QML algorithms may generalize better in the presence of only
a small amount of training data. In the team where I conducted my thesis at the
Fraunhofer Institute, they have previously researched quantum-classical convolutional
neural networks and their performance on medical data. This research has shown
promising results, indicating that quantum-variants of CNNs have the potential to
outperform classical CNNs in this domain [Mat+22]. Building upon this previous work,
my thesis aimed to further enhance the results by incorporating a pooling mechanism.

While advancements in computer hardware and software have simplified the training
and deployment of CNNs in medical imaging, effective data selection and interpreta-
tion remain crucial factors for successful utilization. Proper curation, preprocessing,
and annotation of data are essential to ensure that CNNs receive high-quality input
that accurately represents real-world scenarios encountered in radiological imaging.
Additionally, efforts to ensure the ethical and responsible use of CNNs in the healthcare
sector are of utmost importance to avoid undesirable consequences, including potential
biases or discriminatory outcomes.

11

3 Introduction to quantum computing

3.1 Quantum bits

The qubit, or quantum bit, is a fundamental concept in quantum computation and
quantum information. Unlike classical bits, which have only two possible states, qubits
are in superposition states that are linear combinations of |0⟩ and |1⟩. Mathematically,
qubits are abstract entities that can be represented as vectors in a two-dimensional
complex vector space. The two special states |0⟩ and |1⟩ are the computational basis
states and form an orthonormal basis for this vector space [NC02].

The properties of qubits can be visualized geometrically using the Bloch sphere. The
Bloch sphere is a unit sphere that represents the state space of a single qubit. The north
and south poles of the sphere correspond to the states |0⟩ and |1⟩, respectively, while
all other points on the surface of the sphere correspond to superposition states:

|ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩

The range of values for θ and φ such that they cover the whole sphere is θ ∈ [0, π) and
φ ∈ [0, 2π). Angle θ corresponds to lattitude and angle φ corresponds to longitude.

Figure 3.1: Bloch sphere representation of a qubit [Jaz+19].

12

3 Introduction to quantum computing

This establishes a direct mapping between the qubit state and the position on the
sphere, ensuring a one-to-one relationship. The Bloch sphere, however, does not account
for the global phase since states |ψ⟩ and eiλ|ψ⟩ are considered equivalent. Therefore, it
can be used to visualize the effect of quantum gates and operations on a qubit’s state,
which can be represented as a rotation of the sphere around different axes.

The state of a qubit can be manipulated and transformed in ways that lead to
measurement outcomes that depend distinctly on the different properties of the state.
When a qubit is measured, it collapses into either the |0⟩ or |1⟩ poles with probabilities
determined by the magnitudes of the coefficients of the corresponding state in the
superposition. In the context of the Bloch representation, the probability of a quantum
state collapsing to a particular pole is directly proportional to the distance of the
corresponding arrow from that pole. Specifically, a state whose arrow is closer to the
north pole has a higher probability of collapsing to the north pole, and vice versa for
the south pole. The angle θ between the arrow and the vertical axis represents the
magnitude of this probability.

The power of quantum computation and quantum information lies in the ability to
manipulate and transform qubits and their states in ways that allow for efficient and
powerful algorithms for solving problems that are intractable for classical computers.

3.1.1 Multiple qubits

The behavior of qubits, becomes intriguing when we consider multiple qubits, indeed
while a single qubit quantum computer may not be as interesting, as it can be seen as
a way of performing probabilistic computations, the introduction of multiple qubits
opens up new possibilities. For a two-qubit system, there are four computational basis
states: |00⟩, |01⟩, |10⟩, and |11⟩. A quantum state of two qubits involves associating a
complex coefficient, or amplitude, with each computational basis state. The state vector
describing a two-qubit system is then given by

|ψ⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩

where αx is the amplitude associated with basis state |x⟩. Similar to a single qubit,
the probability of measuring a particular outcome x is given by |αx|2, and the post-
measurement state collapses to |x⟩. The normalization condition requires that the sum
of the probabilities for all possible outcomes is equal to one, i.e., ∑x∈[0,1]2 |αx|2 = 1,

where [0, 1]2 denotes the set of all binary strings of length two.
When measuring only one qubit in a two-qubit system, the post-measurement state

is re-normalized by a factor to ensure the normalization condition is satisfied. An
important two-qubit state is the Bell state given by

13

3 Introduction to quantum computing

|00⟩+ |11⟩√
2

.

The Bell state is responsible for many surprising phenomena in quantum computation
and quantum information, such as quantum teleportation that uses two classical bits
to transmit a single qubit in an unknown quantum state and superdense coding that
allows the transmission of two classical bits of information using only one qubit . Upon
measuring the first qubit of a Bell state, there is a 50% chance of obtaining 0, leaving
the post-measurement state |φ′⟩ = |00⟩, and a 50% chance of obtaining 1, leaving
|φ′⟩ = |11⟩.

Therefore, measuring the second qubit always gives the same result as measuring the
first qubit, suggesting that the measurement results are related. Correlations in the Bell
state have been a topic of intense interest since the famous work of Einstein, Podolski,
and Rosen in which they first drew attention to the strange properties of these states.

A quantum circuit can accept an input of n qubits, where each qubit can exist
in a superposition of |0⟩ and |1⟩.Therefore the total number of possible states is 2n

and ranges from |0 . . . 0⟩ to |1 . . . 1⟩. Each quantum superposition of n qubits can be
represented by:|ϕ⟩ = 1√

2n ∑2n−1
i=0 |i⟩.

Quantum computers possess the ability to process data at significantly higher speeds
compared to classical computers and supercomputers. A notable illustration of this
is the simulation of a fully entangled 500-qubit system, which would necessitate
a computer with a storage capacity of 2500 bits, surpassing the estimated number
of atoms in the universe. This aspect holds great potential for simulation purposes.
Researchers are actively working towards leveraging this immense computational power
to simulate molecules. Notably, a breakthrough was achieved by scientists from Harvard
and Google, who demonstrated the utilization of a quantum computer for modeling
electron interactions in a complex molecule [Har21]. As early as 1981, physicist Richard
Feynman, a Nobel laureate, predicted that quantum computers based on quantum
mechanics could accurately simulate large molecules []. Quantum computers offer the
possibility of directly simulating systems governed by quantum principles, such as
molecules or materials, owing to the quantum nature of their constituent quantum bits.
Recent experiments have exhibited the remarkable capabilities of these devices when
performing carefully chosen tasks [].

Nevertheless, manipulating and controlling the quantum states of multiple qubits
to execute useful calculations remains challenging and prone to errors. Consequently,
researchers are exploring two primary avenues: increasing the number of qubits in a
system and implementing error correction or mitigation techniques.

14

3 Introduction to quantum computing

3.2 Quantum computation

3.2.1 Single qubit gates

Single qubit gates are an essential building block in quantum circuits, just as classical
logic gates are in classical circuits. They are used to manipulate the state of a single
qubit, which can be represented as a superposition of the basis states |0⟩ and |1⟩. The
action of a single qubit gate is defined by its effect on the amplitudes of the basis states
[NC02].

For example, a quantum NOT gate, which is analogous to the classical NOT gate,
maps |0⟩ to |1⟩ and vice versa. However, it also has a nontrivial effect on superpositions
of |0⟩ and |1⟩. Specifically, a quantum NOT gate maps the state

α|0⟩+ β|1⟩

to the state
α|1⟩+ β|0⟩.

This action is linear and reversible, which is a general property of quantum mechanics.
It can be represented by a 2x2 matrix, where the first column corresponds to the output
when the input is |0⟩ and the second column corresponds to the output when the input
is |1⟩. In the case of the quantum NOT gate, this matrix is given by

X ≡
[

0 1
1 0

]
The matrix representation of a single qubit gate must satisfy certain constraints. In
particular, the matrix must be unitary, meaning that its conjugate transpose times itself
is equal to the identity matrix:

U†U = I,

where U† is the conjugate transpose of U and I is the 2x2 identity matrix. This condition
ensures that the gate preserves the normalization of the quantum state, which requires
that the sum of the squared magnitudes of the amplitudes is equal to 1. In other words,
the total probability of measuring a qubit in any state must be 1.

Any 2x2 unitary matrix can be used as a valid single qubit gate. This means that there
are many nontrivial single qubit gates beyond the quantum NOT gate. A non-trivial
single qubit gates is the Z gate:

Z ≡
[

1 0
0 −1

]

15

3 Introduction to quantum computing

which leaves |0⟩ unchanged, and flips the sign of |1⟩ to give −|1⟩. Another important
gate is the Hadamard gate, which maps |0⟩ to a superposition of |0⟩ and |1⟩ and |1⟩ to
a different superposition of |0⟩ and |1⟩:

H ≡ 1√
2

[
1 1
1 −1

]
This gate is often used to create superposition states, which are important for many
quantum algorithms. Single-qubit gates are indispensable for manipulating the state
of a single qubit in quantum circuits, enabling arbitrary unitary operations and play-
ing a vital role in practical quantum circuit design, as well as being a fundamental
requirement for universal quantum computing.

Figure 3.2: Visualization of the action of the Hadamard gate on the Bloch sphere on a
qubit in state |0⟩ [Uni].

3.2.2 Multiple qubit gates

Multiple bit gates are essential components in classical and quantum computing circuits.
In classical computing, six notable multiple bit gates are the AND, OR, XOR, NAND,
NOR and XNOR gates.

16

3 Introduction to quantum computing

Figure 3.3: Classical multiple bit gates: AND, OR, XOR, NAND, NOR, XNOR [SII21]

In quantum computing, the prototypical multi-qubit logic gate is the controlled-NOT
or CNOT gate, which has two input qubits, the control qubit and the target qubit. The
CNOT gate can be seen as a generalization of the classical XOR gate since the control
qubit and the target qubit are XORed and stored in the target qubit.

Figure 3.4: XOR classical = CNOT quantum [Wik21]

17

3 Introduction to quantum computing

3.2.3 Common one-qubit and two-qubits gates

The most commonly used 1-bit gates and their effect on the input qubits are as follow:
Name Symbol Matrix Form Action upon the Qubit

Identity I
[

1 0
0 1

]
No action

Pauli-X X
[

0 1
1 0

]
Rotation by π around the X axis

Pauli-Y Y
[

0 −i
i 0

]
Rotation by π around the Y axis

Pauli-Z Z
[

1 0
0 −1

]
Rotation by π around the Z axis

Hadamard H 1√
2

[
1 1
1 −1

]
Creates a 50% chance superpositior

Rotational X RX(θ)

[
cos

(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

)]
Rotation by θ around the X axis

Rotational Y RY(θ)

[
cos

(
θ
2

)
− sin

(
θ
2

)
sin

(
θ
2

)
cos

(
θ
2

)]
Rotation by θ around the Y axis

Rotational Z RZ(θ)

[
e−iθ/2 0

0 eiθ/2

]
Rotation by θ around the Z axis

The most commonly used 2-bit gates and their effect on the input qubits are as
follow:

Name Symbol Matrix Form Action upon the Qubit

Controlled-X gate CX


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 Apply X gate on target if control=|1⟩.

Controlled-Y gate CY


1 0 0 0
0 1 0 0
0 0 0 −i
0 0 i 0

 Apply Y gate on target if control=|1⟩.

Controlled-Z gate CZ


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 Apply Z gate on target if control=|1⟩.

18

3 Introduction to quantum computing

3.3 NISQ devices

NISQ is an acronym for "Noisy Intermediate-Scale Quantum" computing systems that
comprise a limited number of qubits, typically on the order of about 100. These devices
exhibit limited connectivity and gate fidelity, which affects their overall performance¹².

In the realm of quantum computing, he deleterious effects of noise and decoherence
complicate the full realization of the computational potential of these systems.The
presence of errors is a fundamental limitation across all quantum technologies. To
address this challenge, the scientific community is actively engaged in researching
quantum error correction and mitigation techniques aimed at mitigating the effects of
errors on quantum computations.

Currently, there are three major categories of quantum processing devices: circuit-
based, annealing-based, and analog-based. Each of these technologies has unique
advantages and limitations, leading researchers to further improve their functionalities.

In particular, quantum algorithms such as VQE (Variational Quantum Eigensolver)
take advantage of the comparatively modest computational requirements of NISQ
computers. They enable the solution of optimization problems in industries such as
finance, logistics, and chemistry. This approach minimizes the burden on quantum
hardware while still leveraging the power of quantum computation.

Quantum Computer Challenges
QC Requirement Why Challenging? Potential Solutions

Entanglement
-Key quantum mechanics
-Gives QCs their calculation power
-Maintaining entanglement is the challenge

- Isolate qubits from environmental noise
- Fault-tolerant system architecture
- QC technology with less noise vulnerability

Decoherence - Irreversible loss of qubit information in QCs
- Superconducting circuits
- Quantum dots
- Color center in diamonds or other crystals

Qubit error
correction

-Quantum information cannot be copied,
which prevents normal error-correction techniques
- QC error correction is feasible, more complex

- Logical qubits in addition to physical qubits
- Multiple error-prone physical qubits work together to
mimic a stable single qubit

Low data
transfer rate

- QCs need faster 1/0 data rate to feed apps
- Lowers QC utilization rate and usage value

- Not clear how to solve this issue yet
- Increasing need as deployment takes off

Deployment Why Challenging? Potential Solutions
Low-temp
operation

- Most QC technologies need extremely low temperature
- Needed to minimize decoherence

- Superconducting tech advances
- QC tech operating near room temperature

Multiple QC
technologies

- QC technology battles market uncertainty
- Fractured investments, expertise, and resources

- One QC tech becomes dominant
- Maybe two QC techs become clear leaders

Qubit
fabrication

- Minimal capacity to manufacture qubit systems
- Minimal qubit parts supply chain

- Qubit manufacturing investments
- Qubit parts supply chain investments

Software
ecosystem

-Many software platforms:QCalgorithms, QCsoftware
apps, QC SDKs, QC control software
- PC software platforms to interface and control QCs

- Open-source software platforms
- Hardware abstraction and APIs for multiple QCs:

Across generations and QC technologies
High cost and
complexity

Rapid changes, lab production volume,
QC tech competition, limited workforce

- More investments and higher volumes
- More planning and cooperation

(Source: [GAO19])

19

3 Introduction to quantum computing

3.4 Quantum Machine Learning

Quantum Machine Learning (QML) is an emerging field that sits at the intersection
of quantum computing and machine learning. Its primary goal is to harness the
unique properties of quantum computing to enhance and accelerate machine learning
algorithms. QML researchers are working towards developing faster and more accurate
learning algorithms than what is currently achievable with classical computing [Bia+17].

During the current NISQ era, with limited connectivity and relatively low gate fideli-
ties, QML research is primarily focused on two directions for near term applications.
The first direction involves using quantum computing-based subroutines to accelerate
traditional machine learning techniques.These subroutines could take advantage of the
quantum computer’s large parallel computing power to perform calculations faster
than a conventional computer might for the same task. The second direction involves
studying parameterized quantum circuits, also called variational quantum circuits
(VQC). These circuits can be trained using classical optimizers. The goal is to achieve
quantum advantages, where quantum algorithms outperform classical algorithms on
certain tasks.

Quantum machine learning (QML) research is driven by the extensive state space
and computational potential offered by quantum systems, as well as their ability to
represent mappings that are challenging or computationally intractable in classical
settings.

However, training quantum neural networks and optimizing them pose challenges
due to the non-convex nature of the loss landscape and the presence of barren plateaus.
Barren plateaus refer to regions in the parameter space where gradients diminish
exponentially as the number of qubits increases. Consequently, finding optimal pa-
rameters that minimize the loss function and improve algorithm performance becomes
exceedingly difficult. To address this issue, various approaches have been explored, in-
cluding introducing noise during training, employing gradient rescaling or resampling,
and developing optimization algorithms specifically tailored for quantum systems
[McC+18].

In their work [Abb+21], Abbas et al. investigated the expressiveness and learnability
of quantum models, demonstrating that well-designed quantum neural networks
can surpass classical neural networks in terms of higher effective dimensions and
faster learning capabilities. The authors utilized information geometry tools to define
the concept of expressibility for both quantum and classical models, introducing
a novel generalization limit based on effective dimension, which relies on Fisher
information. Additionally, they established a connection between the Fisher information
spectrum and barren plateaus, highlighting that certain quantum neural networks
exhibit resilience to this problem and can achieve faster training compared to classical

20

3 Introduction to quantum computing

models. This advantage arises from their optimization landscapes, characterized by a
more uniformly distributed Fisher information spectrum.

3.4.1 Quantum Data Encoding

In quantum machine learning, a feature map is a unitary transformation that embeds
classical data into a quantum state of Hilbert space. The choice of the feature map
is essential as it determines the expressive power of parametrized quantum circuits
as function approximators. Indeed, the encoding influences the available frequencies
and the richness of the frequency spectrum that the model can access. By using
different encoding strategies, quantum models can therefore learn different types of
functions, and this can affect the generalization performance of the model [SSM21].
Thus, selecting an appropriate data encoding strategy is crucial to ensure that the
model can accurately learn from the input data and generalize to new data. Several
methods for data embedding exist, including basis encoding, amplitude encoding, and
higher order encoding.

Threshold encoding Using a certain threshold t, an input x is encoded to the
quantum state |0⟩ if x < t, and otherwise to the state |1⟩.

Basis encoding associates the input, represented as a natural number N ∈N, with
a quantum basis state. The input is converted into its binary string representation
b1b2 . . . bn, where n is the number of bits necessary to represent the number in binary,
2n−1 ≤ N ≤ 2n., and each qubit in the quantum state passes through a sequence of
RX(θ) and RZ(θ) gates.If bi = |0⟩, then θ = 0, the qubit remains the same. If bi = |1⟩,
then θ = π, the qubit is negated. The basis encoding needs n = ⌈log(N)⌉ qubits.

Amplitude encoding, on the other hand, maps the input vector x = [x1, x2, . . . , x2n]T

into a quantum state using the amplitudes of the basis states of the system. The vector
is first normalized to ensure that its elements are in the complex field and sum to
1: ∑2n

i=0 |xi|2 = 1. The resulting quantum state is |ϕx⟩ = ∑2n

i=1 xi|i⟩, allowing for the
encoding of 2n features into n qubits. If the number of features is not a power of 2, the
vector is padded with constant values to reach the closest higher power of 2.

The higher order encoding method is the one that was used. This method uses
two-qubit gates, in addition to single-qubit gates, leading to an entangled encoding
feature map. This technique starts with qubits in state |0⟩ and applies a Hadamard
gate and a Z-axis rotation RZ (xn), where xn denotes the n-th input. An entangling
operation RZZ

(
ϕij

)
is then applied to every qubit pair i and j, consisting of a CNOT

gate, a rotation RZ
(
ϕij

)
, and another CNOT gate. The rotation RZ

(
ϕij

)
is applied to

the j-th qubit, using ϕij = xi ∗ xj, where xi and xj are inputs.
The higher order encoding technique is particularly interesting for quantum machine

learning models, as it was shown that for support vector machines, quantum advantage

21

3 Introduction to quantum computing

can only be achieved if the encoding feature map is difficult to simulate classically
[Hav+19].

3.4.2 Trainable variational circuits layer

The trainable quantum layer is a fundamental component in many quantum machine
learning models, which consists of various rotational gates that transform the input
quantum state into the desired output state. The trainable quantum layer can be
expressed as:

UΘ = e−iθmUm e−iθm−1Um−1 ...e−iθ1U1

In this representation, Ui represents the i-th rotational gate, and θi represents its
corresponding trainable parameter. The set of trainable parameters is denoted as
Θ = {θ1, θ2, ..., θm}. These parameters are learned during the training process to
optimize the output of the quantum circuit.

Each term e−iθkUk in the expression corresponds to a rotation of the quantum state
around the unitary operator Uk by an angle θk. By applying these successive rotations,
the trainable quantum layer transforms the input quantum state according to the
learned rotation angles to produce the desired output.

The trainable quantum layer includes various rotational gates, including RX, RY, RZ,
and U gates, along with their controlled variants. These gates are applied to the input
quantum state in a specific order, which can be arbitrary. The placement of these gates
can be optimized during the training process to obtain the best performance of the
quantum circuit.

Ideally, the experiments are simulated using software libraries such as PennyLane
and Qiskit to present the results. The purpose behind this choice is to overcome
limitations present in current quantum hardware, such as long waiting queues and
concerns regarding reproducibility. Furthermore, simulation allows for more efficient
exploration of different architectures and optimization techniques, while providing a
flexible and accessible environment for experimentation. The input to the trainable
quantum layer is the quantum state prepared by the embedding circuit, and the output
is obtained by applying the UΘ ensemble of gates to this state.

3.4.3 Quantum measurement

In VQCs, a measurement is performed to extract classical information from the quantum
state generated by running a quantum circuit on n qubits. After the measurement, the
output can be represented as a set of 2n probabilities of each basis state of the entire
n-qubit output or as n expectation values of each qubit.

22

3 Introduction to quantum computing

To compute the expectation value of a qubit, we use the formula:

⟨ψ|Zj|ψ⟩ = Tr(Zjρ)

where |ψ⟩ is the quantum state generated by the quantum circuit, Zj is the Pauli Z
operator acting on the j-th qubit, and ρ is the density matrix of the quantum state. This
formula gives us the average value of the observable Zj in the state |ψ⟩.

To obtain the expectation values of all n qubits, we apply the formula for each qubit
index j. This gives us a set of n expectation values ⟨Z0⟩, ⟨Z1⟩, ..., ⟨Zn−1⟩.

3.4.4 Classical Optimization Loop

Optimizing a VQC is crucial to achieve accurate quantum results. The VQC generates an
output that is compared to the expected output in supervised learning. This comparison
results in a loss function, which is sent to a classical optimizer. The optimizer updates
the quantum rotational parameters based on the loss value and optimization strategy.
Although the classical optimizer does not use quantum technology, it is vital for
optimizing the VQC. This optimization process is iterative, meaning that the parameters
are repeatedly adjusted and measurements taken until the VQC output is optimized.
This occurs either when the maximum epoch is reached or the desired accuracy is
achieved.

Figure 3.5: Typical VQC based QML pipeline [Sen+22]

23

3 Introduction to quantum computing

3.4.5 The Effective Dimension: A Measure of Model Complexity

The effective dimension (ED) serves as a valuable metric for assessing the generalization
power and fitting ability of classical and quantum machine learning models. Derived
from the Fisher Information Matrix, a statistical technique that measures the impact of
parameter variances on output probabilities, it offers an alternative complexity measure
inspired by information geometry.

The primary objective of the effective dimension is to estimate the model’s size within
the expansive model space, which represents the set of all possible functions for a
specific model class. In this context, the Fisher information matrix acts as the underlying
metric. By leveraging the number of data observations, the ED incorporates a natural
scale or resolution for observing the model space. This is particularly advantageous
when working with limited data, as it sheds light on how data availability influences
the accurate assessment of model complexity.

The effective dimension can be mathematically defined as follows:

dγ,n(MΘ) = 2
log

(
1

VΘ

∫
Θ

√
det(idd +

γn
2π log n F̂(θ))dθ

)
log

(
γn

2π log n

) ,

whereMΘ = p(·, ·; θ) : θ ∈ Θ is a statistical model with a d-dimensional parameter
space Θ ⊂ Rd and n data samples. VΘ =

∫
Θ dθ is the volume of the parameter space,

and F̂(θ) ∈ Rd×d is the normalized Fisher information matrix defined as:

F̂ij(θ) = d
VΘ∫

Θ tr(F(θ))dθ
Fij(θ),

where Fij(θ) is the Fisher information matrix evaluated at θ. The normalization
ensures that

1
VΘ

∫
Θ

tr(F̂(θ))dθ = d

.
In the above equation, γ ∈ (0, 1] and log n are constant factors proposed by [Ber+20a]

and extended by [Abb+21] establish a generalization bound. The regularization pa-
rameter γ is employed to prevent overfitting by limiting the model’s complexity. It
controls the trade-off between model complexity and accuracy, where a larger value of
γ corresponds to a simpler model with lower accuracy, and a smaller value of γ leads
to a more complex model with higher accuracy. The inclusion of the log n term ensures
that the effective dimension scales logarithmically with the number of data samples,
effectively avoiding an overestimation of the model’s complexity.

24

4 Quantum classical convolutional neural
networks: SOTA and motivation

Quantum variants of convolutional neural networks (CNNs) can be realized in different
ways. One possibility is to transfer all the components of a CNN onto a quantum
computer (QC), resulting in what is known as a quantum convolutional neural network
(QCNN) [CCL19]. However, this approach generally relies on the availability of
quantum random access memory (QRAM), which is currently not accessible on near-
term intermediate-scale quantum (NISQ) devices.

QRAM is a quantum algorithm that allows classical data to be converted into
corresponding quantum states. Unfortunately, implementing the QRAM approach
requires a significant number of qubits to convert classical data into quantum states,
making it impractical for use in current NISQ devices.

Some studies have explored the potential of executing specific parts of a CNN on a
QC, considering that it may be feasible with existing hardware due to its lower qubit
requirements. For instance, the initial classical convolutional layer in a CNN can be
substituted with either an untrainable or trainable quantum convolutional layer. By
adopting this architecture, previous works have achieved promising performance on
the MNIST dataset [Mat+22].

4.1 QCNN architecture

In [CCL19] the authors propose a novel quantum machine learning model called
Quantum Convolutional Neural Network (QCNN) inspired by convolutional neural
networks (CNNs). QCNN efficiently handles quantum machine learning tasks with
O(log(N)) variational parameters for N qubits, enabling efficient training and implemen-
tation on near-term quantum devices. The QCNN architecture combines Multi-scale
Entanglement Renormalization Ansatz (MERA) a representation of a quantum state
generated by a series of unitary and isometry layers and quantum error correction
(QEC), making it powerful for solving quantum many-body problems. The paper
demonstrates the potential of QCNN through two examples. Firstly, accurately recog-
nizing quantum states associated with 1D symmetry-protected topological phases using
a QCNN trained on a small set of solvable points. Secondly, optimizing a quantum

25

4 Quantum classical convolutional neural networks: SOTA and motivation

error correction scheme for a given error model by proposing a generic framework for
encoding and decoding procedures, outperforming known quantum codes. The QCNN
circuit model is inspired by classical CNNs and includes convolution and pooling layers
implemented using quantum operations. It takes an unknown quantum state, applies
convolution and pooling operations to reduce system size, and obtains output through
measurements. The unitaries in the circuit are learned through training on labeled data.
The authors relate QCNN to MERA and QEC, highlighting the underlying mechanisms.
QCNN combines MERA and nested QEC, with pooling layers acting as syndrome
measurements for error correction. This enables QCNN to mimic renormalization
group flow and efficiently classify quantum states or optimize error correction schemes.
However, due to the relatively large number of variational parameters, the current
implementation is on classical computers rather than short-term quantum devices.

Figure 4.1: QCNN and MERA share the same circuit structure, but run in reverse
directions. [CCL19]

In a rigorous analysis of gradient scaling for QCNN parameters, it has been discov-
ered that QCNNs do not suffer from exponentially vanishing gradients, also known
as barren plateau landscapes, unlike many other QNN architectures. The gradient
variance of QCNNs decreases polynomially, ensuring their trainability even under
random initialization. This result provides an analytical guarantee and highlights the
unique characteristics of QCNNs [Pes+21].

Another study benchmarked QCNNs for classification tasks on classical data, specifi-
cally focusing on pattern recognition. Various aspects of the QCNN algorithm were
explored, including the structure of parameterized quantum circuits, quantum and
classical data encoding methods, pre-processing techniques, cost functions, and op-
timizers. The experiments demonstrated that QCNNs, with a small number of free

26

4 Quantum classical convolutional neural networks: SOTA and motivation

parameters, achieved high classification accuracy comparable to or even surpassing
traditional convolutional neural networks under similar training conditions. The ad-
vantage of QCNNs was attributed to their ability to capture global correlations through
entanglement, while CNNs can only capture local correlations [HKP22].

In a different approach, a novel variational circuit ansatz called branching QCNN
(bQCNN) was introduced. It leverages mid-circuit measurements and classical control
flow capabilities of quantum devices, allowing for the execution of subsequent quantum
operations based on measurement results. The bQCNN was found to be significantly
more expressive than the original QCNN, indicating its potential for a wider range
of quantum machine learning tasks on near-term devices. The utility of mid-circuit
measurements in near-term quantum applications was emphasized, and possibilities
for future hybrid quantum-classical approaches were discussed [Mac+22].

Overall, while QCNNs have attracted attention for their potential in quantum data
analysis, there has been relatively limited emphasis on pooling operations. Only a few
papers have explored the utilization of certain pooling techniques, such as mid-circuit
measurement. However, the exploration of different types of pooling methods in
QCNN research has been relatively scarce.

4.2 QCCNN architecture

In the QCCNN architecture, the classical convolutional layer found in a conventional
CNN is replaced with a quantum convolutional layer. The classical CNN typically
comprises a single convolutional layer utilizing a 2×2 filter size, followed directly by a
fully connected layer. In contrast, the QCCNN architecture incorporates a quantum
convolutional layer using the same 2×2 filter size. The QCCNN employs the higher
order encoding technique, which is expected to yield optimal performance for quantum
convolutional layers. Within the quantum convolutional layer, a trainable component
known as the Variational Quantum Circuit (VQC) is utilized. Subsequently, each qubit
is measured in the Z-basis, and the resulting measurements are stored individually in
feature maps. With a filter size of 2×2 and a one-to-one mapping of input values to
qubits, the QCCNN employs four qubits and generates four feature maps.

The QCCNN architecture effectively tackles the input and output challenges faced
by current quantum machine learning algorithms. The input problem pertains to the
computational complexity involved in encoding classical data into quantum states,
while the output problem relates to the limited expressive power of traditional quantum
circuits. By employing a higher order encoding technique and storing measurements in
feature maps, the QCCNN successfully overcomes these obstacles.

27

4 Quantum classical convolutional neural networks: SOTA and motivation

Figure 4.2: Hybrid Quantum-Classical Convolutional Neural Network (QCCNN): (a)
Overall Architecture, (b) VQC Architecture [Liu+21]

28

5 QCCNNS with a quantum pooling layer

5.1 Motivation

Hybrid quantum-classical structures have gained increasing popularity in the field
of quantum machine learning due to their potential for solving complex problems
beyond classical computers’ capabilities. However, limited research exists on hybrid
classical-quantum structures, as most attention has been focused on fully quantum
solutions. The pooling mechanism within these architectures, which plays a crucial
role in classical machine learning, has been relatively understudied in the context of
quantum machine learning.

Pooling mechanisms are instrumental in extracting relevant features, reducing feature
map dimensionality, minimizing variance, and accelerating the learning process in
classical machine learning. Maximum pooling is effective for capturing low-level objects
such as edges and points, while medium pooling is suitable for extracting smooth
objects. Therefore, a comprehensive investigation of the pooling mechanism in hybrid
quantum-classical structures could be valuable.

This thesis aims to conduct a comprehensive investigation into the pooling mecha-
nism within hybrid quantum-classical structures. The primary focus is to explore the
effects of four distinct pooling techniques on both model accuracy and effective di-
mensionality. While three of the four pooling techniques were implemented by myself,
the fourth technique, namely modular quantum pooling blocks, was implemented by
another researcher within the lab.

The objectives of this thesis are as follows:
1. Designing and evaluating four distinct quantum pooling architectures for hybrid

quantum-classical Convolutional Neural Networks (QCCNNs) tailored to ultrasound
image analysis for malign lesion identification.

2. Comparing the performance of the proposed quantum pooling architectures with
classical convolutional neural networks and quantum-classical CNNs without pooling.
Models with similar numbers of trainable parameters were considered to highlight the
advantages of pooling within the hybrid structures.

3. Providing an explanation for the performance of the developed models using a
quantum-relevant metric. This analysis sheds light on the effectiveness of the employed
pooling mechanisms.

29

5 QCCNNS with a quantum pooling layer

It is noteworthy to acknowledge that the initial step in the implementation process
involved utilizing the QCCNN code developed by [Mat+22] as a starting point and
the incorporation of the effective dimension metric into the QCCNN framework was
executed by one of my supervisors.

5.2 Experimental Setup

5.2.1 Dataset

In this study, we use the BreastMNIST dataset, which is an integral component of
the MedMNIST datasets [Aa20][Ya21]. Despite its relatively modest size, with 546
training images, 156 test images, and 78 validation images, the BreastMNIST dataset
contributes to the MedMNIST collection. It serves as a good resource for calibrating and
comparing deep learning models, particularly in scenarios where limited data and low-
resolution images are prevalent, as commonly encountered in medical imaging tasks.
The BreastMNIST dataset comprises breast ultrasound images collected from a cohort
of 600 patients, encompassing normal, benign, and malignant lesions. These images
have been downscaled to a low-resolution of 28× 28 pixels to facilitate benchmarking
and comparison of deep learning models. Additionally, to enable binary classification
of breast cancer, the dataset merges the normal and benign states into a non-malignant
class, facilitating a clear distinction between non-malignant and malignant lesions.

To mitigate potential issues during model training, such as the occurrence of explod-
ing gradients, the dataset was preprocessed by normalizing the data to have a mean of
0 and a standard deviation of 1. This normalization step ensures that the input data is
centered and scaled appropriately, thereby facilitating stable and effective training of
quantum convolutional neural networks (QCCNNs).

30

5 QCCNNS with a quantum pooling layer

Figure 5.1: Benign vs Malignant breast ultrasound [Aa20]

5.2.2 Pennylane

Hybrid computing is at the heart of variational circuit optimization, where a quantum
algorithm is optimized using a classical coprocessor. We chose PennyLane when
coding and training our model, it is a Python 3 software framework for differentiable
programming for quantum computers. The library provides a unified architecture
for short-range quantum computing devices, supporting both qubit and continuous
variable paradigms. It allows users to easily distribute quantum circuits to different
quantum devices and seamlessly integrates classical machine learning libraries with
quantum simulators and hardware, giving users the ability to train quantum circuits
[Ber+18].

5.3 Problem statement

We consider a dataset consisting of N medical images x(i)
N
i=1, each with dimensions

28× 28, along with corresponding binary labels y(i) ∈ 0, 1 indicating whether a tumor
in the image is benign or malignant.

To classify the tumors, we propose a quantum-classical convolutional neural net-
work (QCCNN) with parameters θ = θq, θc, where θq and θc respectively represent
the quantum and classical parameters of the model. Given an input image x(i),
the QCCNN produces a probability distribution over the two classes, pθ(y(i)|x(i)) =
pθ(y(i) = 0|x(i)), pθ(y(i) = 1|x(i)).

The network architecture starts with a quantum convolutional layer composed of
one to four quantum circuits. These circuits are parameterized by a set of variables θ.

31

5 QCCNNS with a quantum pooling layer

Each circuit processes the input image and generates one to four output feature maps.
The total number of feature maps produced by this layer is four for all configurations
explored in this thesis. The output from the quantum convolutional layer is then fed
into a fully connected layer that uses another set of variables θc. This layer integrates
information from the feature maps and outputs a classical probability distribution over
two classes.

The QCCNN is trained by minimizing the cross-entropy loss between predicted and
true labels for the entire dataset.

L(θ) = − 1
N

N

∑
i=1

y(i) log pθ(y(i) = 1|x(i)) + (1− y(i)) log(1− pθ(y(i) = 1|x(i)))

To optimize the parameters θ, we use the ADAM optimizer and update the parame-
ters via gradient descent:

θ ← θ − η∇θL(θ)

where η is the learning rate and ∇θL(θ) is the gradient of the loss with respect to
the learnable parameters θ.

In contrast to the quantum convolution operation that yields four values, the quantum
convolution + pooling operation, produces a single value. In order to establish a fair
basis for comparison with the classical CNN and the QCCNN baseline, we utilize four
quantum kernels concurrently to construct the quantum pooling architecture. This
ensures that the classical layers maintain a consistent parameter count across various
configurations. Moreover, this approach presents the benefit of extracting unique
features from the image by employing four parallel quantum kernels. It is worth noting
that the quantum pooling operation can be made trainable, for instance, through the
utilization of mid-circuit measurements during the pooling process.

32

5 QCCNNS with a quantum pooling layer

input image

feature maps fully connected
layer

output

e
n

co
d

in
g

va
ri
a

tio
n

a
l

ci
rc

u
it

classical
convolution

quantum
convolution

e
n

c
o

d
in

g
quantum

convolution +
pooling

|0

|0

|0

|0

p
o

o
lin

g
 c

ir
cu

it

|0

|0

|0

|0

Figure 5.2: Architecture sketch of the CNN and QCCNNs with quantum convolutional
layers with and without pooling.

5.4 Pooling methods

The performance of three different quantum and hybrid pooling techniques is studied:
mid-circuit measurements, ancilla qubits with controlled gates, and qubit selection with
classical postprocessing.

5.4.1 Mid circuit measurement

In the realm of quantum computing, the concept of mid-circuit measurements has
garnered attention as a means to improve the efficiency and practicality of quantum
circuits. By strategically measuring a portion of the quantum system during an inter-

33

5 QCCNNS with a quantum pooling layer

mediate stage of the circuit, additional parameters can be introduced while reducing
circuit complexity. This approach strikes a favorable balance between the number of
parameters involved and the intricacy of the circuit.

Although the introduction of mid-circuit measurement in a quantum system can
potentially disrupt the interference between quantum states and lead to computational
errors, modern IBM quantum computers have made progress in mitigating this issue.
Indeed, the use of mid-circuit measurements to change circuit composition, also known
as dynamic circuits, has progressed to the point where it is now effectively implemented
in hardware. This development was highlighted at the Qiskit Spring Challenge, where
dynamic circuits were the main topic of the challenge and were successfully tested on
real hardware machines, such as the 127-qubit Sherbrooke system. This is the largest
qubit capacity made available to the general public to date [23].

In this master’s thesis, mid-circuit measurements are employed to exert control over
multiple qubits simultaneously, similar to a multi-qubit controlled gate. This technique
proves advantageous as practical implementations of multi-qubit controlled gates often
face hardware limitations [Chu+23].

The use of mid-circuit measurements facilitates the implementation of diverse paths
within the circuit based on measurement outcomes. In a scenario involving four qubits
labeled as q0, q1, q2, and q3, the state of qubit q0 is measured. Subsequently, if the
measurement outcome of q0 is 1, rotation gates Rθ0 , Rθ1 , and Rθ2 are applied to qubits
q1, q2, and q3, respectively. Qubit q1 is then measured, and if its measurement yields
1, rotation gates Rθ3 and Rθ4 are applied to qubits q2 and q3. Finally, a CNOT gate is
applied between q2 and q3, the state of q2 is measured, and if the measurement outcome
is 1, rotation Rθ5 is applied to qubit q3. The last qubit, q3, undergoes measurement, and
its value is fed into the classical fully-connected layer. Within this pooling method, two
different alternatives are tested, employing rotation gates with trainable angles RX and
RY respectively.

34

5 QCCNNS with a quantum pooling layer

Encoding

RY mid-circuit measurement layer

Rotations applied when measuring qubit 0 outputs 1
Rotations applied when measuring qubit 1 outputs 1

Rotation applied when measuring qubit 2 outputs 1

H

H

H

H

RZ

RZ

RZ

RZ

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Y

Y

Y

Y

Y Y

Figure 5.3: Mid-circuit measurement pooling example. This circuit consists of a higher-
order encoding, followed by a RY mid-circuit measurement layer.

5.4.2 Ancilla qubit and controlled gates

The field of quantum machine learning has gained significant attention due to its
potential for solving complex computational problems. However, models with no
inductive bias often face challenges in terms of trainability and generalization. To
address these issues, researchers have proposed group-invariant quantum machine
learning models, which incorporate certain design principles to enhance performance
and robustness [Lar+22].

Ancilla Qubits

We employ an ancilla qubit as the target of measurement within the variational circuit
layer, thereby achieving a direct reduction in input dimensionality from 5 (comprising
4 data qubits and 1 ancilla qubit) to 1 (solely the ancilla qubit).

Controlled Gates

In quantum computing, controlled gates are quantum gates that act on one qubit (called
the target qubit) only when another qubit (called the control qubit) is in a particular
state. In a quantum pooling layer, a sequence of controlled gates can be applied to the
data qubits using the ancilla qubit as the control qubit. This allows the computation to
depend on all possible states of the ancilla qubit, instead of just a single state. In our
setup the controlled gates are either CNOT, CY or CZ, with

35

5 QCCNNS with a quantum pooling layer

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 CY =


1 0 0 0
0 1 0 0
0 0 0 −i
0 0 i 0

 CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



(a) CNOT gate representation (b) CY gate representation (c) CZ gate representation

Computation for a 4-qubits system and 4-CNOT

The system is initiated by preparing a quantum state ψ composed of four data qubits
and one ancilla (control) qubit. The ancilla qubit is acted upon by the Hadamard gate H,
resulting in the state ψ1”. Subsequently, a sequence of four controlled gates, specifically
CNOT gates, is employed. In each case, the ancilla qubit serves as the control and one
of the data qubits functions as the target. This process is repeated for qubit 1, qubit
2, and so on. Once the controlled gates have been executed, the Hadamard gate H is
applied once again to the ancilla qubit. Following this, the PauliZ gate is performed on
the same ancilla qubit. Finally, the expectation value of the ancilla qubit is extracted,
serving as the output measurement of the experiment.

To represent this circuit mathematically, we can use the following notation:

• |0⟩⊗5 denotes the initial state of the 5 qubits, where each qubit is in the |0⟩ state.

• H denotes the Hadamard gate.

• CNOT denotes the controlled-X gate.

• Z denotes the Pauli-Z gate.

In our experimental setup, we initially prepare all qubits in the |0⟩ state within the
computational basis. However, before executing the pooling operation, we subject
the qubits to data encoding, inducing non-trivial quantum states. Also some of the
architectures evaluated in this thesis involve adding CNOT and rotations before the
pooling step. Despite this, we can simplify the calculations by approximating all data
qubits to be in the |0⟩ state during pooling. Conducting computations under these
simplified conditions, with CNOT serving as the control gate, can provide valuable

36

5 QCCNNS with a quantum pooling layer

insights into the fundamental mechanisms that govern the pooling process.We keep the
other parameters identical to the original experimental design.

Given a 5-qubit system initially in state |00000⟩, let’s apply the mentioned operations
sequentially:

Apply Hadamard on the third qubit:

|00000⟩ → (H|0⟩)⊗ |0000⟩ = (|0⟩+ |1⟩)/
√

2⊗ |0000⟩ = (|00000⟩+ |10000⟩)/
√

2

Apply CNOT between the first and fifth qubits, knowing ancilla is the control qubit:

(|00000⟩+ |10000⟩)/
√

2→ (|00000⟩+ |10001⟩)/
√

2

Apply CNOT between the second and fifth qubits:

(|00000⟩+ |10001⟩)/
√

2→ (|00000⟩+ |10011⟩)/
√

2

Apply CNOT between the third and fifth qubits:

(|00000⟩+ |10011⟩)/
√

2→ (|00000⟩+ |10111⟩)/
√

2

Apply CNOT between the fourth and fifth qubits:

(|00000⟩+ |10111⟩)/
√

2→ (|00000⟩+ |11111⟩)/
√

2

Apply the Hadamard gate on the third qubit:

(|00000⟩+ |11111⟩)/
√

2→ (H|0⟩)⊗ |0000⟩+ (H|1⟩)⊗ |1111⟩

= (|0⟩+ |1⟩)/
√

2)⊗ (|0000⟩+⊗(|0⟩ − |1⟩)/
√

2)⊗ (|1111⟩

= (|00000⟩+ |10000⟩)/2 + (|01111⟩ − |11111⟩)/2

Apply the Pauli-Z gate on the third qubit:

(|00000⟩+ |10000⟩)/2+(|01111⟩− |11111⟩)/2→ (Z|0⟩)⊗|0000⟩+(Z|1⟩)⊗|0000⟩+(Z|0⟩)⊗|1111⟩− (Z|1⟩)⊗|1111⟩

= |00000⟩ − |10000⟩+ |01111⟩+ |11111⟩
The final state of the 5-qubit system after a series of operations is given by the

normalized linear combination = |00000⟩ − |10000⟩+ |01111⟩+ |11111⟩.

37

5 QCCNNS with a quantum pooling layer

To determine the probability of measuring the ancilla qubit in a particular state, we
can compute the expectation value of the fifth qubit by using the projection operator
onto the state where the fifth qubit is either 0 or 1. Since the coefficient of each of the
four basis states that include the fifth qubit is the same, we can simplify the calculation
by observing that there are two possible states with qubit 5 in the state 0, and two
possible states with qubit 5 in the state 1. Hence, the probability of measuring qubit 5
in either state 0 or 1 is equal, and is 50%.

Figure 5.5: Pooling circuit described H-CNOT-H

Figure 5.6: Pooling circuit computational basis

38

5 QCCNNS with a quantum pooling layer

Figure 5.7: Bloch sphere

H

H

H

H

H

RZ

RZ

RZ

RZ

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

RX

H

RX

RX

RX

Encoding CYs with ancilla layer Basic entangling layer

Y Y Y Y

Figure 5.8: Ancilla qubit with controlled gates pooling example. This circuit consists of
a higher-order encoding, followed by a basic entangling layer and CYs with
ancilla qubit.

5.4.3 Qubit selection with classical postprocessing

In this experiment, we were inspired by the work of [Sch+20] in the field of classical
post-processing. After encoding the data, we randomly selected one qubit from our
4-qubit system, which could either remain fixed throughout the computation or be
randomly selected for each iteration. The selected qubit was then measured, and the
measurement outcome was used as the output.

Additionally, we applied a post-processing step similar to an activation function,
using either the sign or tanh function as our activation function. The sign function,

39

5 QCCNNS with a quantum pooling layer

denoted as Sign(x), is defined as follows:

f (x) = Sign(x) = 2H(x)− 1 =


−1, x < 0

0, x = 0

1, x > 0

,

where H(x) represents the Heaviside step function.
Moreover, the tanh function, denoted as Tanh(x), is defined as:

Tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x .

By applying these activation functions, we explored whether quantum circuits benefit
from non-linear activation functions in a similar manner to classical algorithms. As the
output of all tested circuits falls within the range of -1 to 1, the Sign(x) and Tanh(x)
non-linear activation functions were employed to ensure that the output of the quantum
circuit remains within the same range.

H

H

H

H

RZ

RZ

RZ

RZ

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

RX

RX

RX

RX

Encoding Basic entangling layer

Expectation
 Pauli Z

Sign post processing

Figure 5.9: Qubit selection with classical postprocessing pooling example. This circuit
consists of a higher-order encoding, followed by a basic entangling layer
and a qubit selection pooling with Sign(x) postprocessing

5.4.4 Modular quantum pooling blocks

To offer a thorough analysis, this thesis also examines an alternative pooling method
explored by the research team, which I did not directly contribute to. By including this
alternative method, valuable insight is gained into the performance of pooling methods,
especially considering that one of the Mod used is considered a top performer, and
impacts the conclusions drawn from the effective dimensionality analysis.

The proposed approach inspired by [HKP22] utilizes modular blocks that operate
on pairs of adjacent qubits, with the utilization of either quantum pooling operations

40

5 QCCNNS with a quantum pooling layer

(Mod A) or a combination of quantum convolutional circuits and pooling operations
(Mod B and C). Initially, the application of two pooling blocks to the qubits results in
a dimensionality reduction from four to two qubits. During the pooling process, the
remaining qubits are traced out. Subsequently, the two remaining qubits undergo an-
other round of convolutional and pooling operations, employing the same architecture
as the preceding blocks, further reducing the dimensionality from four to one qubit.

The circuit architecture of this quantum pooling layer is illustrated in figures 5.10 to
5.13. The design of this pooling method incorporates modular blocks that act on pairs
of neighboring qubits (the first and second qubits, and the third and fourth qubits).
Each of these blocks consists of either a quantum pooling operation alone (Mod A) or a
combination of a quantum convolutional circuit and a quantum pooling operation. Two
different architectures are investigated for the convolutional part, with the first variant
being inspired by tree tensor network ideas (Mod B), while the second circuit variant is
known for its favorable entanglement properties (Mod C) [SJA19]. Consequently, the
initial two pooling blocks yield a dimensionality reduction from four to two qubits, as
the other qubits are traced out during the pooling operation. The remaining two qubits
undergo an additional round of convolutional and pooling operations, employing the
same architecture as the earlier blocks, resulting in a reduction in dimensionality from
four to one qubit. The remaining qubit is measured and subsequently incorporated
into the following classical parts of the network. The modular design of this circuit
architecture facilitates its easy extension and adaptability to more complex scenarios.

H

H

H

H

RZ

RZ

RZ

RZ

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Encoding

MOD

MOD

MOD

Mod layer

Figure 5.10: Modular quantum pooling blocks pooling example. This circuit consists of
a higher-order encoding, followed by modular quantum pooling blocks.

41

5 QCCNNS with a quantum pooling layer

MOD

RZ RXRXRX

X

Figure 5.11: Mod-a

RZ RXRXRX

X

RY

RY

MOD

Figure 5.12: Mod-b

MOD

H

H

Z RZ RXRXRX

X

RXRXRX

RXRXRX

Figure 5.13: Mod-c

42

6 Results and quantum metrics

To ensure result integrity and minimize the impact of chance, three runs were performed
per architecture, each with different initial parameters in the network. These runs
were conducted for each solution and architecture type using different random seeds.
The averaged results from these three runs were used to calculate uncertainty bands,
representing the variation. The uncertainty bands were determined by calculating
the mean minus the standard deviation and the mean plus the standard deviation.
PyTorch [Pa19] was used for conducting the experiments, while Pennylane [Ber+20b]
was employed for simulating the quantum circuits without considering noise effects.

For training the networks, both classical and hybrid, a fixed set of parameters was
used: 20 epochs, the Adam optimizer, a learning rate of 0.001, and a batch size of 8.
No extensive hyperparameter tuning was performed due to the lengthy training times
of QCCNNs. The focus of the study was not on encoding paradigms; hence, only one
variant, specifically higher-order encoding, was utilized.

To assess the model’s performance, three metrics were employed: traditional machine
learning metrics such as loss and accuracy on the training dataset, and a metric
commonly used in quantum computing, namely the effective dimension. Additionally,
an in-depth analysis of the mid-circuit measurement method was conducted, which
involved studying rotation parameters and the loss landscape.

6.1 Classical CNN and QCCNN baseline

The architectures presented in the previous work of the research team in [Mat+22]
are used as the baseline. The classical CNN baseline consists of a convolutional layer
with four filters of size 2× 2, which is directly followed by a fully connected layer. In
the QCCNN baseline, the convolutional layer is replaced by a quantum convolution
operation to represent filters of size 2× 2 moving over the image, as shown in figure 5.2.
I did not contribute to the implementation of these baseline models, but I implemented
the pooling counterparts, with the exception of the modular pooling.

43

6 Results and quantum metrics

6.2 Mid-circuit measurement

This section considers two hyperparameters: the type of rotation utilized (RX or RY)
and the learning rate (0.001 or 0.01). This leads to a total of four possible combinations.
However, our primary focus is on the learning rate of 0.001. This choice is supported
by the observations depicted in Figure 6.1, where the choice of a learning rate of
0.01 leads to overfitting. In particular, it is observed that the model attains nearly
100% accuracy on the training dataset within fewer than 20 epochs. However, the
validation accuracy initially reaches its highest point within the initial few epochs
but subsequently deteriorates. This issue was consistent across most of the attempted
pooling methods. However, the method of using mid-circuit measurements with RX
rotations presented in this thesis is the only one where the model perfectly learned the
training data, reaching a training accuracy of 1.0 (with a validation accuracy of at most
88.47%) within 20 epochs. Hence, unless explicitly stated otherwise, it can be assumed
that the learning rate is set to 0.001.

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Epochs

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Mid circuit measurement RX with lr=0.001
Mid circuit measurement RY with lr=0.001
Mid circuit measurement RX with lr=0.01
Mid circuit measurement RY with lr=0.01

(a) Accuracy on the training dataset

0 1 2 3 4 5 6 7 8 9 1011121314151617181920
Epochs

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Ac
cu

ra
cy

Mid circuit measurement RX with lr=0.001
Mid circuit measurement RY with lr=0.001
Mid circuit measurement RX with lr=0.01
Mid circuit measurement RY with lr=0.01

(b) Accuracy on the testing dataset

Figure 6.1: Accuracy comparison of 4 QCCNNs with mid-circuit measurement pooling
depending on learning rate.

6.2.1 Accuracy and loss

In Figures 6.2 and 6.3, the training and validation accuracy and loss curves are depicted,
showcasing a comprehensive comparison between the hybrid quantum-classical mid
circuit measurement variants, the classical CNN baseline, and the non-pooling QCCNN
baseline. Notably, the learning accuracy of the hybrid quantum-classical variants
consistently surpasses that of the classical model on the training dataset. Furthermore,
in terms of learning loss, despite the initial lower loss exhibited by the QCCNN baseline

44

6 Results and quantum metrics

in the first half of the learning process, comparable loss is achieved by the QCCNN
with RX mid circuit measurement method starting epoch 12. This QCCNN with RX
mid circuit measurement model also shows a narrower uncertainty band, indicating
reduced sensitivity to the choice of random seed. This characteristic could indicate a
superior stability and reliability.

When assessing generalization on the validation set, the architecture utilizing RX

measurements of the intermediate circuit outperforms the architecture utilizing RY
measurements of the intermediate circuit quite obviously. Moreover, the former sur-
passes both baselines in terms of maximum validation accuracy. Encouragingly, this
performance improvement is sustained until the end of the training, reflecting efficient
progress in the training process. This observation is further supported by the validation
loss of that model, which falls below that of the other methods after episode 10.

While the QCCNN with RX mid circuit measurement model appears to be the most
effective approach, it is important to acknowledge that the overlapping variance bands
with the other methods prevent definitive conclusions regarding its superiority.

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

A
cc

ur
ac

y

QCCNN with Rx
mid-circuit measurements

QCCNN with Ry
mid-circuit measurements

QCCNN without pooling layer
baseline

Classical CNN baseline

(a) Accuracy

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

L
os

s

QCCNN with Rx
mid-circuit measurements

QCCNN with Ry
mid-circuit measurements

QCCNN without pooling layer
baseline

Classical CNN baseline

(b) Loss

Figure 6.2: Performance comparison on the training dataset of 4 models: 2 QCCNNs
with mid-circuit measurement pooling, a basic QCNN and a classical CNN.

45

6 Results and quantum metrics

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

A
cc

ur
ac

y

QCCNN with Rx
mid-circuit measurements

QCCNN with Ry
mid-circuit measurements

QCCNN without pooling layer
baseline

Classical CNN baseline

(a) Accuracy

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.35

0.40

0.45

0.50

0.55

L
os

s

QCCNN with Rx
mid-circuit measurements

QCCNN with Ry
mid-circuit measurements

QCCNN without pooling layer
baseline

Classical CNN baseline

(b) Loss

Figure 6.3: Performance comparison on the validation dataset of 4 models: 2 QCCNNs
with mid-circuit measurement pooling, a basic QCNN and a classical CNN.

6.2.2 Quantum weights

The rotation angles of RX gates and RY gates trained in a mid-circuit measurement
pooling circuit for a QCCCNs model are depicted in figures 6.4 and 6.5 respectively.
A total of six rotation gates can be trained in this type of VQC, resulting in the
representation of six angles. These angles should fall within the range of -π/2 to +π/2.

When using a learning rate of 10-3, the angles of the six rotation gates do not
converge significantly. Among the six weights, two maintain their values throughout
all epochs, while the remaining weights exhibit minor fluctuations without displaying
clear convergence.

When using a learning rate of 10-2, the updates to the angles in the training process
can be described as relatively abrupt. Nevertheless, it should be noted that the move-
ment in the unsuccessful pooling technique is even more pronounced, highlighting a
general learning rate that is too high.

However, it is crucial to consider the shape of the loss landscape before drawing
definitive conclusions. In the event that the loss landscape is flat, it would be reasonable
to observe significant differences in angle values. This behavior can be attributed to a
good model’s tendency to explore longer distances in an effort to escape local minima.
Therefore, a comprehensive evaluation of these results should take into account the

46

6 Results and quantum metrics

characteristics of the loss landscape.

0 500 1000 1500 2000

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Learning rate 0.001

0 200 400 600 800 1000 1200 1400
1.0

0.5

0.0

0.5

1.0

1.5

(b) Learning rate 0.01

Figure 6.4: Angle update for mid circuit measurement with RX

0 200 400 600 800 1000 1200 1400
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) Learning rate 0.001

0 200 400 600 800 1000 1200 1400
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

(b) Learning rate 0.01

Figure 6.5: Angle update for mid circuit measurement with RY

47

6 Results and quantum metrics

0 200 400 600 800 1000 1200 1400
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) CY

0 200 400 600 800 1000 1200 1400
0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

(b) CZ

Figure 6.6: Angle update for ancilla qubit with 3 inversed controlled gates and learning
rate 0.01

6.2.3 Loss landscape

The loss landscape was visualized on a three-dimensional graph, with the z-axis
representing the loss value. The aim was to determine the most appropriate approach
by considering two options based on the parameters of the x and y axes.

The first option was to use Principal Component Analysis (PCA) to perform dimen-
sionality reduction. The aim was to reduce the feature space from 6 to 2 dimensions.
However, the axes resulting from PCA were not very interpretable, making it difficult
to obtain meaningful explanations from the plot.

To improve interpretability, the second approach was chosen. In this approach, two
carefully selected angles were used as x and y axes. Specifically, two sets of angles
were selected: 0 and 5, and 3 and 4. The aim of using these angles was to highlight
differences in the loss landscape for angles that depend on the same measurement
and for those that represent the most different dependence. Indeed, Angles 3 and 4
corresponded to the rotation gates affected by the measurement of the second qubit.
Angle 0 represented a rotation gate impacted by the measurement of the first qubit,
while angle 5 represented the only rotation gate reliant on the third qubit measurement.

48

6 Results and quantum metrics

Encoding

RY mid-circuit measurement layer

Rotations applied when measuring qubit 0 outputs 1
Rotations applied when measuring qubit 1 outputs 1
Rotation applied when measuring qubit 2 outputs 1

H

H

H

H

RZ

RZ

RZ

RZ

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Y

Y

Y

Y

Y Y

0

5

3

4

Figure 6.7: Mid-circuit measurement pooling example with rotations numbered.

The analysis of the loss landscape involves the utilization of angle values denoted
as alpha and beta, which are used along the x and y axes, respectively. These angles
are obtained throughout the training process. The mean and standard deviation of
these angles are calculated by considering the 20 values over 20 training epochs. The
examination of the loss with respect to variations in angle values around two specific
points, namely the angle at epoch 0 (representing the angle at the beginning of training,
i.e., the cold start) and the angle at epoch 20 (following training), is a part of our
approach. The range of angles within three standard deviations from these points is
explored, resulting in a total of 100 loss points.

During the cold start, it is observed that the loss does not appear to depend sig-
nificantly on the quantum parameters before training the overall model. This lack of
dependence can be attributed to the relatively smaller number of quantum parameters
(6) compared to the classical parameters (a few hundred). As a result, even when the
quantum parameters are varied, the influence of the randomness in other classical
parameters impedes the achievement of a desirable loss.

In contrast, after training, the angles of the pooling layers exhibit a significant impact
on the loss. Just a single adjustment of an angle can cause the loss to either decrease or
increase by a factor of 5. It is worth noting that certain angles have a greater importance
than others. For instance, as depicted in Figure 1, angle 0 has a more pronounced effect
on the loss landscape compared to angle 5.

Furthermore, this analysis provides deeper insights into the behavior of the weights.
When using a learning rate of 10-̂3, the weights do not undergo substantial changes
and do not seem to converge. Multiple local minima exist in close proximity, often
with similar values. The proximity of these minima facilitates transitions between

49

6 Results and quantum metrics

them, as the values around the final angle fall within a similar range, even for local
maxima. A sharp increase in loss is only observed when moving beyond one standard
deviation from the final angle. On the other hand, when using a learning rate of
10-̂2, as depicted in Figure 1, the analysis reveals that the model is situated within
a relatively flat minimum surface. Even when the learning rate is increased by one
standard deviation, similar values are obtained. This observation may also explain the
non-convergence of the angles.

Consequently, the loss landscape analysis reveals that the quantum parameters have
limited influence during the initial stages of training due to the overwhelming number
of classical parameters. However, after training, the angles of the pooling layers play a
crucial role in determining the loss. Additionally, the presence of multiple local minima
in close proximity hinders the convergence of these angles.

(a) Angle 3, 4 (b) Angle 0, 5

Figure 6.8: Visualization of the loss landscape of mid-circuit measurement with RY
gates, cold start, and a learning rate of 0.001 for angles alpha and beta.

50

6 Results and quantum metrics

(a) Angle 3, 4 (b) Angle 0, 5

Figure 6.9: Visualization of the loss landscape of mid-circuit measurement with RY
gates, following training and a learning rate of 0.001 for angles alpha and
beta.

(a) Cold start (b) Following training

Figure 6.10: Visualization of the loss landscape of mid-circuit measurement with RX
gates, and a learning rate of 0.01 for angles 3 and 4.

51

6 Results and quantum metrics

6.2.4 Effective dimension

The effective dimension is associated with three significant implications that contribute
to our understanding of a model’s performance.

Firstly, a measure of the model’s information capacity is provided, potentially enhanc-
ing confidence in its ability to generalize on other datasets. When a combination of high
effective dimension, high accuracy, and low loss is observed, it may suggest that these
results are a consequence of the model architecture rather than simply coincidental
compatibility with the dataset. However, achieving the same accuracy and loss with
a low effective dimension might reduce the significance of the model architecture in
contributing to these outcomes.

Secondly, the correlation between accuracy and effective dimension, or the presence
of low accuracy with low effective dimension, could be used as a potential screening
tool. By efficiently calculating the effective dimension, which depends solely on the
architecture and not on training, it is possible to make a preliminary assessment of
whether it is worthwhile to invest extensive computational resources and time in
training a model. This approach may help in prioritizing runs more effectively.

Lastly, an important aspect is the ability to explore why a specific architecture
is performing well or not. By seeking justifications for the observed performance,
researchers can gain valuable insights into the underlying mechanisms and make
informed decisions for further improving the model.

Note that the effective dimension being examined is for a variational quantum circuit
(VQC) and not a complete layer. A pooling layer consists of four VQCs of a specific
type. Since pooling layers typically consist of 4 to 12 angles and the basic entangling
layer has 4 angles, a normalized effective dimension is employed that considers the
number of parameters (angles).

In our analysis, we find that the Basic entangling layer without pooling has a nor-
malized effective dimension of approximately 0.933, compared to 0.909 for mid-circuit
measurement. However, it would be incorrect to conclude that the basic entangling
layer is superior in regards to that metric based solely on these values. The effective di-
mension accounts for the capacity of a single circuit, and although the basic entangling
layer has a higher one, it outputs four measurements without tracing out any qubits,
meanwhile mid circuit circuit trace out 3 out of 4 qubits. In addition, the normalization
penalizes mid-circuit measurement, which has six parameters compared to the four
of the entangling. Hence, it is rather intriguing and in a positive manner that a single
mid-circuit VQC demonstrates comparable complexity to the basic entangling layer,
despite the inclusion of four mid-circuit VQCs in the QCCNN model as opposed to
just one basic entangling VQC.

52

6 Results and quantum metrics

Table 6.1: Effective dimension (ED) and highest training/validation accuracy of QC-
CNN models with mid-circuit measurement pooling and the QCCNN base-
line.

VQC Normalized ED Max train acc Max val acc
RX mid-circuit measurements 0.909 ± 0.016 92.81 ± 0.37 87.08 ± 1.02
RY mid-circuit measurements 0.906 ± 0.008 87.14 ± 0.44 84.31 ± 0.20
Basic entangling layer no pooling 0.933 ± 0.019 89.19 ± 1.05 86.25 ± 1.56

6.3 Ancilla qubit and controlled gates

6.3.1 Accuracy and loss

Figures 6.11 and 6.12 present the training and validation accuracy and loss curves,
showcasing a comprehensive comparison between the hybrid quantum-classical ancilla
qubit and controlled gates models, the classical CNN baseline, and the non-pooling
QCCNN baseline. The results suggest that the overall performance of the QCCNN
does not appear to be significantly affected by the inclusion of CY or CZ controlled
gates, as indicated by the similarity in the accuracy and loss curves for both variants.

It is observed that the employed ancilla qubit with controlled gates pooling method
demonstrates satisfactory training performance. This method achieves a maximum
accuracy slightly higher than that of the classical CNN and maintains a similar loss
to it during the latter half of the training. However, when examining the validation
accuracy, this method does not perform as well as both the classical CNN and the
QCCNN without pooling baselines, as its maximum validation accuracy is lower than
that of the aforementioned baselines.

53

6 Results and quantum metrics

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.700

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Ac
cu

ra
cy

QCCNN with CYs and ancilla qubit

QCCNN with CZs and ancilla qubit

QCCNN without pooling layer
baseline

Classical CNN baseline

(a) Accuracy

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Lo
ss

QCCNN with CYs and ancilla qubit

QCCNN with CZs and ancilla qubit

QCCNN without pooling layer
baseline

Classical CNN baseline

(b) Loss

Figure 6.11: Performance comparison on the training dataset of 4 models: 2 QCCNNs
with ancilla qubit and controlled gates pooling, a basic QCNN and a
classical CNN.

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

Ac
cu

ra
cy

QCCNN with CYs and ancilla qubit

QCCNN with CZs and ancilla qubit

QCCNN without pooling layer
baseline

Classical CNN baseline

(a) Accuracy

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.40

0.45

0.50

0.55

Lo
ss

QCCNN with CYs and ancilla qubit

QCCNN with CZs and ancilla qubit

QCCNN without pooling layer
baseline

Classical CNN baseline

(b) Loss

Figure 6.12: Performance comparison on the validation dataset of 4 models: 2 QCCNNs
with ancilla qubit and controlled gates pooling, a basic QCNN and a
classical CNN.

54

6 Results and quantum metrics

6.3.2 Effective dimension

Drawing a conclusive assessment of the effectiveness of the controlled gate and ancilla
qubit method based on the effective dimension is a challenging task. Although the
results obtained from both CY and CZ Variational Quantum Circuits (VQCs) were
nearly identical, there is a noticeable difference in the effective dimensions of the CY
and CZ gates.

Furthermore, the VQCs that utilize this pooling method employ four parameters,
which is the same as the number of parameters in the basic entangling layer. Hence, the
reduction in effective dimension from 0.933 to 0.801 or 0.772 can be solely attributed
to the tracing out of four out of five qubits in the controlled gates method and the
choice of VQC architecture. Therefore, despite this decrease, the effective dimension is
not sufficiently low to explain the predominantly subpar results of the QCCNN when
utilizing this pooling method.

Table 6.2: Effective dimension (ED) and highest training/validation accuracy of QC-
CNN models with ancilla qubit and controlled gates pooling and the QCCNN
baseline.

VQC Normalized ED Max train acc Max val acc
Ancilla qubit with CY gates 0.772 ± 0.041 85.81 ± 0.89 84.17 ± 1.18
Ancilla qubit with CZ gates 0.801 ± 0.042 85.81 ± 0.89 84.17 ± 1.18
Basic entangling layer no pooling 0.933 ± 0.019 89.19 ± 1.05 86.25 ± 1.56

6.4 Qubit selection with classical postprocessing

6.4.1 Accuracy and loss

Figures 6.13 and 6.14 depict the training and validation accuracy and loss curves,
allowing for a comprehensive comparison among the hybrid quantum-classical qubit
selection with classical postprocessing models, the classical CNN baseline, and the
non-pooling QCCNN baseline. The results suggest that the non-pooling QCCNN
performs better in terms of both accuracy and loss on the training dataset.

However, it is worth noting that the architecture utilizing the Tanh(x) activation
function exhibits promising generalization and fast learning on the validation data.
It tends to outperform both the classical baseline and the non-pooling QCCNN, on
average, in terms of validation accuracy starting from the third epoch, and achieve the
highest accuracy on that epoch. Although this architecture consistently performs well,
the variability in validation accuracy makes it challenging to conclusively determine its

55

6 Results and quantum metrics

superiority over the non-pooling QCCNN. Conversely, the architecture employing the
Sign(x) activation function struggles to generalize effectively on the validation data,
showing notable variance bands. The inconsistency is particularly evident in the loss,
where only one of the three runs achieves satisfactory results. This behavior may be
attributed to potential information loss associated with the application of the Sign(x)
function.

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

QCCNN with qubit selection and
Tanh classical postprocessing

QCCNN with qubit selection and
Sign classical postprocessing

QCCNN without pooling layer
baseline

Classical CNN baseline

(a) Accuracy

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Lo
ss

QCCNN with qubit selection and
Tanh classical postprocessing

QCCNN with qubit selection and
Sign classical postprocessing

QCCNN without pooling layer
baseline

Classical CNN baseline

(b) Loss

Figure 6.13: Performance comparison of 4 models on the training dataset: 2 QCCNNs
with qubit selection with classical postprocessing pooling, a basic QCNN
and a classical CNN.

56

6 Results and quantum metrics

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Ac
cu

ra
cy

QCCNN with qubit selection and
Tanh classical postprocessing

QCCNN with qubit selection and
Sign classical postprocessing

QCCNN without pooling layer
baseline

Classical CNN baseline

(a) Accuracy

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.40

0.45

0.50

0.55

0.60

Lo
ss

QCCNN with qubit selection and
Tanh classical postprocessing

QCCNN with qubit selection and
Sign classical postprocessing

QCCNN without pooling layer
baseline

Classical CNN baseline

(b) Loss

Figure 6.14: Performance comparison of 4 models on the validation dataset: 2 QCCNNs
with qubit selection with classical postprocessing pooling, a basic QCNN
and a classical CNN.

6.4.2 Effective dimension

The primary focus of this pooling method lies in the type of classical post-processing
applied. However, it should be noted that a decrease in effective dimension from 0.933
to 0.666 is observed when the effective dimension of the Variational Quantum Classifier
(VQC) is calculated before classical postprocessing. This decrease occurs specifically
when three out of four qubits are traced out, and only the third qubit (q2) is retained.

Table 6.3: Effective dimension (ED) and highest training/validation accuracy of QC-
CNN models with qubit selection for classical postprocessing pooling and
the QCCNN baseline.

VQC Normalized ED Max train acc Max val acc
Qubit selection 0.666 ± 0.048 82.13 ± 0.23 88.47 ± 1.29
Basic entangling layer no pooling 0.933 ± 0.019 89.19 ± 1.05 86.25 ± 1.56

57

6 Results and quantum metrics

6.5 Modular quantum pooling blocks

6.5.1 Accuracy and loss

Figures 6.15 and 6.16 depict the training and validation accuracy and loss curves,
allowing for a comprehensive comparison among the hybrid quantum-classical models
with modular pooling blocks, the classical CNN baseline, and the non-pooling QCCNN
baseline.

The performance in terms of validation accuracy shows promise for the modular
pooling methods. Out of the three methods considered (Mod-a, Mod-b, and Mod-c),
the classical baseline is outperformed by Mod-a and Mod-c. This suggests that the
incorporation of modular pooling has the potential to enhance accuracy in classifying
breast ultrasound images. Furthermore, all three methods end up achieving higher
training accuracy than the classical baseline.

Notably, Mod-c stands out for its substantial performance gain compared to the
classical baseline. It exhibits rapid and steep convergence early in the training process
and demonstrates clear and distinct error bands that do not overlap with other models.
This suggests a more confident and stable learning process for Mod-c. However, the
comparison based on loss is inconclusive due to the presence of overlapping error
bands, making it difficult to declare Mod-c as superior.

Conversely, Mod-a consistently exhibits the highest loss for both the training and
validation datasets. This indicates higher levels of error despite achieving higher
accuracy in validation. On the other hand, Mod-b demonstrates lower loss during
training compared to both the classical CNN and QCCNN without pooling. However,
on the validation dataset, Mod-b tends to exhibit higher loss compared to the baselines.

58

6 Results and quantum metrics

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.70

0.75

0.80

0.85

0.90

A
cc

ur
ac

y

QCCNN with Mod-a
pooling blocks

QCCNN with Mod-b
pooling blocks

QCCNN with Mod-c
pooling blocks

QCCNN without pooling layer
baseline

Classical CNN baseline

(a) Accuracy

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

L
os

s

QCCNN with Mod-a
pooling blocks

QCCNN with Mod-b
pooling blocks

QCCNN with Mod-c
pooling blocks

QCCNN without pooling layer
baseline

Classical CNN baseline

(b) Loss

Figure 6.15: Performance comparison of 5 models on the training dataset: 3 QCCNNs
with modular quantum pooling blocks, a basic QCNN and a classical CNN.

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

A
cc

ur
ac

y

QCCNN with Mod-a
pooling blocks

QCCNN with Mod-b
pooling blocks

QCCNN with Mod-c
pooling blocks

QCCNN without pooling layer
baseline

Classical CNN baseline

(a) Accuracy

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.35

0.40

0.45

0.50

0.55

L
os

s

QCCNN with Mod-a
pooling blocks

QCCNN with Mod-b
pooling blocks

QCCNN with Mod-c
pooling blocks

QCCNN without pooling layer
baseline

Classical CNN baseline

(b) Loss

Figure 6.16: Performance comparison of 5 models on the validation dataset: 3 QCCNNs
with modular quantum pooling blocks, a basic QCNN and a classical CNN.

59

6 Results and quantum metrics

6.5.2 Effective dimension

The experimental setup involved three different methods: Mod A, Mod B, and Mod C.
Mod A uses 2*3 angles, resulting in a total of 6 parameters. In contrast, both Mod B

and Mod C use 4*3 angles, leading to 12 parameters. The experimental results showed
significant variations among these three methods.

When comparing Mod A pooling to the basic entangling method, it was observed
that Mod A exhibited a lower normalized effective dimension of 0.726, while the basic
entangling method had a value of 0.933. However, drawing definitive conclusions from
this comparison proved inconclusive due to the fact that modular pooling traced out
3 out of 4 qubits and had a different parameter count of 6, in contrast to the basic
entangling method’s 4 parameters.

Regarding Mod B and Mod C, both methods showed low effective dimensions.
Mod B had an effective dimension of 0.149, while Mod C had a value of 0.249. Both
methods shared similar conditions, including 12 parameters and 3 traced-out qubits.
Interestingly, the higher effective dimension observed in Mod C suggested a potential
correlation between effective dimension and accuracy. This was supported by the
fact that Mod C demonstrated notably better results compared to Mod B. However,
it is noteworthy that Mod C exhibited a significant reduction in effective dimension
compared to the basic entangling method, making it challenging to establish a clear
correlation between effective dimension and accuracy since Mod C had better results
than using the basic entangling method.

Table 6.4: Effective dimension (ED) and highest training/validation accuracy of QC-
CNN models with modular quantum pooling and the QCCNN baseline.

VQC Normalized ED Max train acc Max val acc
Modular pooling Mod-a 0.726 ± 0.006 85.21 ± 0.45 87.08 ± 0.00
Modular pooling Mod-b 0.149 ± 0.003 90.04 ± 0.30 82.92 ± 1.18
Modular pooling Mod-c 0.249 ± 0.016 91.49 ± 0.44 89.17 ± 1.56
Basic entangling layer no pooling 0.933 ± 0.019 89.19 ± 1.05 86.25 ± 1.56

6.6 Comparison of the best models

6.6.1 Accuracy and loss

Figures 6.17 and 6.18 presents the performance comparison of the best performing
configuration for each pooling option.

60

6 Results and quantum metrics

The QCCNN with RX mid-circuit measurement consistently outperforms the classical
CNN baseline in terms of training accuracy. It achieves similar loss values while
demonstrating improved stability and reliability. Among the modular pooling methods,
Mod-c shows significant performance improvement. It converges quickly and exhibits
distinct error bands. Additionally, the architecture that utilizes the Tanh(x) activation
function shows promising generalization and fast learning. The inclusion of ancillary
qubit and CY gates contributes to satisfactory training performance.

In general, pooling architectures consistently achieve better results than the traditional
CNN baseline in terms of learning and validation accuracy. QCCNNs also show faster
convergence in terms of validation accuracy. Among the different pooling methods,
the QCCNN using Mod-c modular pooling achieves the highest levels of learning and
validation accuracy and the lowest loss. It is followed by the QCCNN incorporating
mid-circuit RX measurements, and finally, the QCCNN using qubit selection and
classical Tanh(x) post-processing. However, the QCCNN employing ancillary qubit
pooling performs less effectively than the basic QCCNN without pooling.

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

QCCNN with Rx mid-circuit measurements

QCCNN with CYs and ancilla qubit

QCCNN with Mod-c pooling blocks

QCCNN with qubit selection and
Tanh classical postprocessing

QCCNN without pooling layer baseline

Classical CNN baseline

(a) Accuracy

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Lo
ss

QCCNN with Rx mid-circuit measurements

QCCNN with CYs and ancilla qubit

QCCNN with Mod-c pooling blocks

QCCNN with qubit selection and
Tanh classical postprocessing

QCCNN without pooling layer baseline

Classical CNN baseline

(b) Loss

Figure 6.17: Performance comparison of the best performing pooling models on the
training dataset with a basic QCNN and a classical CNN.

61

6 Results and quantum metrics

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Ac
cu

ra
cy

QCCNN with Rx mid-circuit measurements

QCCNN with CYs and ancilla qubit

QCCNN with Mod-c pooling blocks

QCCNN with qubit selection and
Tanh classical postprocessing

QCCNN without pooling layer baseline

Classical CNN baseline

(a) Accuracy

0 1 2 3 4 5 6 7 8 9 10111213141516171819
Epochs

0.35

0.40

0.45

0.50

0.55

Lo
ss

QCCNN with Rx mid-circuit measurements

QCCNN with CYs and ancilla qubit

QCCNN with Mod-c pooling blocks

QCCNN with qubit selection and
Tanh classical postprocessing

QCCNN without pooling layer baseline

Classical CNN baseline

(b) Loss

Figure 6.18: Performance comparison of the best performing pooling models on the
validation dataset with a basic QCNN and a classical CNN.

6.6.2 Effective dimension

The master’s thesis identified the best performing pooling method from each category.
The ED, which measures the model’s information capacity, is expected to have a positive
correlation with training accuracy. However, it is not possible to draw a definitive
conclusion within the scope of this thesis. Mid-circuit measurements exhibit a relatively
high normalized ED and perform well in terms of training accuracy. Interestingly,
Mod-c, despite having one of the lowest normalized ED values, is actually the best
performing variant. Controlled gates with ancillary qubits show an average ED, even
though they were among the least successful pooling methods. Excluding modular
pooling options, a positive correlation between ED and VQC performance was observed.
This suggests that further investigation is needed to explore this relationship. For future
research, it would be valuable to explore alternative normalization methods that are
less stringent, one possible approach could involve dividing by the square root of the
number of parameters, instead of the absolute number, and statistically evaluating its
suitability.

62

6 Results and quantum metrics

Table 6.5: Effective dimension (ED) and highest training/validation accuracy of of all
the best performing QCCNN models with pooling and the QCCNN baseline.

VQC Normalized ED Max train acc Max val acc
RX mid-circuit measurements 0.909 ± 0.016 92.81 ± 0.37 87.08 ± 1.02
Ancilla qubit with CY gates 0.772 ± 0.041 85.81 ± 0.89 84.17 ± 1.18
Modular pooling Mod-c 0.249 ± 0.016 91.49 ± 0.44 89.17 ± 1.56
Qubit selection 0.666 ± 0.048 82.13 ± 0.23 88.47 ± 1.29
Basic entangling layer no pooling 0.933 ± 0.019 89.19 ± 1.05 86.25 ± 1.56

63

7 Conclusion and further work

This master’s thesis delved into the investigation of various quantum-classical pooling
techniques. Specifically, the thesis explored the application of mid-circuit measurements,
ancilla qubits with controlled gates, qubit selection with classical postprocessing,
and modular pooling for hybrid Quantum-Classical Convolutional Neural Networks
(QCCNNs). The aim was to replace the classical convolutional layer in a traditional
CNN with a quantum convolution and pooling layer. The use of QCCNNs shows
promise, especially in scenarios where training data is limited, which is often the case in
the classification of medical images. The evaluation of these techniques was conducted
on a small dataset of breast ultrasound images, with the objective of classifying lesions
as either benign or malignant.

Among the pooling techniques, the modular pooling approach exhibited the best
performance on the selected dataset. The mid-circuit measurements pooling showed
promise in terms of training ability, while the qubit selection with classical postprocess-
ing demonstrated excellent generalization ability. However, no pooling architecture
stood out as significantly superior to the others in terms of classification performance.

The research was constrained by an accuracy limitation in the selected dataset, which
is also observed in traditional cutting-edge architectures for that specific application.
Nevertheless, certain hybrid approaches demonstrated similar or slightly enhanced
accuracy while requiring fewer training iterations and trainable parameters. This faster
learning potential could be particularly beneficial for tasks prioritizing efficiency in the
short term, given that only 4 logical qubits are required.

To evaluate the effectiveness of the proposed techniques, a noteworthy measure
called the effective dimension was utilized. The goal was to examine the relationship
between the highest achieved effective dimension and the validation accuracy. However,
a strong correlation between the two was not established. Additionally, the pooling
process employed in the circuit led to differences in dimensions between the input and
output, making it impossible to calculate other important measures such as expressivity
and entanglement due to the tracing out of qubits.

Moving forward, future research should consider several avenues. Firstly, testing
the proposed architectures on diverse datasets with varying precision levels beyond
BreastMNIST would provide valuable insights into the potential quantum advantages
across different domains. Secondly, exploring alternative quantum indicators that

64

7 Conclusion and further work

can predict accuracy before training would be intriguing. While effective dimension
was considered in this study, a comprehensive understanding of quantum circuits’
capabilities would require investigating measures such as expressivity and entangle-
ment. Lastly, conducting experiments on quantum hardware is crucial to account for
real-world noise and size limitations inherent in practical implementations. This would
offer valuable insights into the feasibility and performance of the proposed pooling
techniques, bridging the gap between simulation-based findings and actual quantum
hardware.

65

List of Figures

2.1 Machine learning= Shallow machine learning + Deep learning [JZH21] 4
2.2 Visual representation of a convolutional layer [Sta23]. 5
2.3 Visual representation of a max pooling layer and an avg pooling layer

[Sta23]. 5
2.4 Visual representation of a fully connected layer [Sta23]. 6
2.5 Comparative plot of loss landscape regions: chaotic vs smooth. [Tho] . 8
2.6 Mammography dataset [Ya21][Aa20]. 10

3.1 Bloch sphere representation of a qubit [Jaz+19]. 12
3.2 Visualization of the action of the Hadamard gate on the Bloch sphere on

a qubit in state |0⟩ [Uni]. 16
3.3 Classical multiple bit gates: AND, OR, XOR, NAND, NOR, XNOR [SII21] 17
3.4 XOR classical = CNOT quantum [Wik21] 17
3.5 Typical VQC based QML pipeline [Sen+22] 23

4.1 QCNN and MERA share the same circuit structure, but run in reverse
directions. [CCL19] . 26

4.2 Hybrid Quantum-Classical Convolutional Neural Network (QCCNN):
(a) Overall Architecture, (b) VQC Architecture [Liu+21] 28

5.1 Benign vs Malignant breast ultrasound [Aa20] 31
5.2 Architecture sketch of the CNN and QCCNNs with quantum convolu-

tional layers with and without pooling. 33
5.3 Mid-circuit measurement pooling example. This circuit consists of a

higher-order encoding, followed by a RY mid-circuit measurement layer. 35
5.5 Pooling circuit described H-CNOT-H . 38
5.6 Pooling circuit computational basis . 38
5.7 Bloch sphere . 39
5.8 Ancilla qubit with controlled gates pooling example. This circuit consists

of a higher-order encoding, followed by a basic entangling layer and CYs
with ancilla qubit. 39

66

List of Figures

5.9 Qubit selection with classical postprocessing pooling example. This
circuit consists of a higher-order encoding, followed by a basic entangling
layer and a qubit selection pooling with Sign(x) postprocessing 40

5.10 Modular quantum pooling blocks pooling example. This circuit consists
of a higher-order encoding, followed by modular quantum pooling blocks. 41

5.11 Mod-a . 42
5.12 Mod-b . 42
5.13 Mod-c . 42

6.1 Accuracy comparison of 4 QCCNNs with mid-circuit measurement pool-
ing depending on learning rate. 44

6.2 Performance comparison on the training dataset of 4 models: 2 QCCNNs
with mid-circuit measurement pooling, a basic QCNN and a classical
CNN. 45

6.3 Performance comparison on the validation dataset of 4 models: 2 QC-
CNNs with mid-circuit measurement pooling, a basic QCNN and a
classical CNN. 46

6.4 Angle update for mid circuit measurement with RX 47
6.5 Angle update for mid circuit measurement with RY 47
6.6 Angle update for ancilla qubit with 3 inversed controlled gates and

learning rate 0.01 . 48
6.7 Mid-circuit measurement pooling example with rotations numbered. . . 49
6.8 Visualization of the loss landscape of mid-circuit measurement with RY

gates, cold start, and a learning rate of 0.001 for angles alpha and beta. 50
6.9 Visualization of the loss landscape of mid-circuit measurement with RY

gates, following training and a learning rate of 0.001 for angles alpha
and beta. 51

6.10 Visualization of the loss landscape of mid-circuit measurement with RX
gates, and a learning rate of 0.01 for angles 3 and 4. 51

6.11 Performance comparison on the training dataset of 4 models: 2 QCCNNs
with ancilla qubit and controlled gates pooling, a basic QCNN and a
classical CNN. 54

6.12 Performance comparison on the validation dataset of 4 models: 2 QCC-
NNs with ancilla qubit and controlled gates pooling, a basic QCNN and
a classical CNN. 54

6.13 Performance comparison of 4 models on the training dataset: 2 QCCNNs
with qubit selection with classical postprocessing pooling, a basic QCNN
and a classical CNN. 56

67

List of Figures

6.14 Performance comparison of 4 models on the validation dataset: 2 QCC-
NNs with qubit selection with classical postprocessing pooling, a basic
QCNN and a classical CNN. 57

6.15 Performance comparison of 5 models on the training dataset: 3 QCCNNs
with modular quantum pooling blocks, a basic QCNN and a classical
CNN. 59

6.16 Performance comparison of 5 models on the validation dataset: 3 QC-
CNNs with modular quantum pooling blocks, a basic QCNN and a
classical CNN. 59

6.17 Performance comparison of the best performing pooling models on the
training dataset with a basic QCNN and a classical CNN. 61

6.18 Performance comparison of the best performing pooling models on the
validation dataset with a basic QCNN and a classical CNN. 62

68

List of Tables

6.1 Effective dimension (ED) and highest training/validation accuracy of
QCCNN models with mid-circuit measurement pooling and the QCCNN
baseline. 53

6.2 Effective dimension (ED) and highest training/validation accuracy of
QCCNN models with ancilla qubit and controlled gates pooling and the
QCCNN baseline. 55

6.3 Effective dimension (ED) and highest training/validation accuracy of
QCCNN models with qubit selection for classical postprocessing pooling
and the QCCNN baseline. 57

6.4 Effective dimension (ED) and highest training/validation accuracy of
QCCNN models with modular quantum pooling and the QCCNN baseline. 60

6.5 Effective dimension (ED) and highest training/validation accuracy of of
all the best performing QCCNN models with pooling and the QCCNN
baseline. 63

69

Bibliography

[] “Quantum Computer Simulates Largest Molecule Yet, Sparking Hope for
Future Drug Discoveries.” In: Science ().

[] “Quantum Simulation of a 45-Atom Molecule.” In: APS Physics 15 (175).

[23] IBM Quantum Computing Challenge - Spring 2023. https://challenges.
quantum-computing.ibm.com/spring-2023. Accessed: May 29, 2023. 2023.

[Aa20] W. Al-Dhabyani and et al. “Dataset of breast ultrasound images.” In: Data
in Brief 28 (2020), p. 104863. doi: 10.1016/j.dib.2019.104863.

[Abb+21] A. Abbas, S. Alexander, M. Cerezo, L. Cincio, P. J. Coles, A. Datta, A. J.
Gray, T. H. Hsieh, I. Kerenidis, and N. M. Linke. “The power of quantum
neural networks.” In: Nature Communications 12.1 (2021), pp. 1–10.

[AG17] N. Aloysius and M. Geetha. “A review on deep convolutional neural
networks.” In: 2017 international conference on communication and signal
processing (ICCSP). IEEE. 2017, pp. 0588–0592.

[AK22] A. Amirkhani and M. P. Karimi. “Adversarial defenses for object detectors
based on Gabor convolutional layers.” In: The Visual Computer 38.6 (2022),
pp. 1929–1944.

[Anw+18] S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami, and M. K.
Khan. “Medical image analysis using convolutional neural networks: a
review.” In: Journal of medical systems 42 (2018), pp. 1–13.

[Ber+18] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S.
Alam, G. Alonso-Linaje, B. AkashNarayanan, A. Asadi, et al. “Pennylane:
Automatic differentiation of hybrid quantum-classical computations.” In:
arXiv preprint arXiv:1811.04968 (2018).

[Ber+20a] O. Berezniuk, A. Figalli, R. Ghigliazza, and K. Musaelian. “A scale-dependent
notion of effective dimension.” In: arXiv preprint arXiv:2001.10872 (2020).

[Ber+20b] V. Bergholm et al. “PennyLane: Automatic differentiation of hybrid quantum-
classical computations.” In: arXiv preprint arXiv:1811.04968 (Feb. 2020).
arXiv: 1811.04968 [physics].

70

https://challenges.quantum-computing.ibm.com/spring-2023
https://challenges.quantum-computing.ibm.com/spring-2023
https://doi.org/10.1016/j.dib.2019.104863
https://arxiv.org/abs/1811.04968

Bibliography

[Bia+17] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd.
“Quantum machine learning.” In: Nature 549(7671) (2017), pp. 195–202.

[Bro+21] J. Brownlee, Q. Zhang, L. Ma, Y. Yang, J. Liang, H. Heidari, and A.
Abbasi. “Machine Learning Applications: A Survey.” In: arXiv preprint
arXiv:2109.07207 (2021).

[Car+22a] M. C. Caro, H.-Y. Huang, M. Cerezo, K. Sharma, A. Sornborger, L. Cincio,
and P. J. Coles. “Generalization in quantum machine learning from few
training data.” In: Nature communications 13.1 (2022), p. 4919.

[Car+22b] M. C. Caro, H.-Y. Huang, M. Cerezo, K. Sharma, A. Sornborger, L. Cincio,
and P. J. Coles. “Generalization in quantum machine learning from few
training data.” In: Nature communications 13.1 (2022), p. 4919.

[CCL19] I. L. Cong, S. Choi, and M. D. Lukin. “Quantum convolutional neural
networks.” In: Nature Physics 15.12 (2019), pp. 1273–1278.

[Chu+23] J. Chu, X. He, Y. Zhou, J. Yuan, L. Zhang, Q. Guo, Y. Hai, Z. Han, C.-K. Hu,
W. Huang, et al. “Scalable algorithm simplification using quantum AND
logic.” In: Nature Physics 19.1 (2023), pp. 126–131.

[DR22] A. Dames and E. Richuso. What Is Quantum-Safe Cryptography and Why Do
We Need It? IBM Cloud Blog. Accessed on March 10, 2022. Mar. 2022.

[GAO19] U. G. A. O. (GAO). Status and Prospects for Quantum Computing. Tech. rep.
GAO-19-204SP. 2019.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[Har21] Harvard Office of Technology Development. “Quantum Computer Simu-
lates Molecule’s Behavior Accurately.” In: Harvard OTD News (2021).

[Hav+19] V. Havlıček, A. D. Córcoles, K. Temme, A. W. Harrow, A. Kandala, J. M.
Chow, and J. M. Gambetta. “Supervised learning with quantum-enhanced
feature spaces.” In: Nature 567.7747 (2019), pp. 209–212.

[HKP22] T. Hur, L. Kim, and D. K. Park. “Quantum convolutional neural network
for classical data classification.” In: Quantum Machine Intelligence 4.1 (2022),
p. 3.

[IS23] R. Ibrahim and M. O. Shafiq. “Explainable Convolutional Neural Networks:
A Taxonomy, Review, and Future Directions.” In: ACM Computing Surveys
55.10 (2023), pp. 1–37.

71

Bibliography

[Jaz+19] F. Jazaeri, A. Beckers, A. Tajalli, and J.-M. Sallese. “A review on quantum
computing: From qubits to front-end electronics and cryogenic MOSFET
physics.” In: 2019 MIXDES-26th International Conference" Mixed Design of
Integrated Circuits and Systems". IEEE. 2019, pp. 15–25.

[JZH21] C. Janiesch, P. Zschech, and K. Heinrich. “Machine learning and deep
learning.” In: Electronic Markets 31.3 (2021), pp. 685–695.

[Kly+14] M. Klysik, S. Garg, S. Pokharel, J. Meier, N. Patel, and K. Garg. “Challenges
of imaging for cancer in patients with diabetes and obesity.” In: Diabetes
technology & therapeutics 16.4 (2014), pp. 266–274.

[KSH12] A. Krizhevsky, I. Sutskever, and G. Hinton. “ImageNet classification with
deep convolutional neural networks.” In: Advances in Neural Information
Processing Systems. Vol. 25(2). 2012, pp. 1097–1105.

[Lar+22] M. Larocca, F. Sauvage, F. M. Sbahi, G. Verdon, P. J. Coles, and M. Cerezo.
“Group-invariant quantum machine learning.” In: PRX Quantum 3.3 (2022),
p. 030341.

[LBH15] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning.” In: Nature 521(7553)
(2015), pp. 436–444.

[Li+18] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. “Visualizing the Loss
Landscape of Neural Nets.” In: Advances in Neural Information Processing
Systems (NeurIPS) 31 (2018), pp. 6389–6399.

[Liu+21] J. Liu, K. H. Lim, K. L. Wood, W. Huang, C. Guo, and H.-L. Huang. “Hybrid
quantum-classical convolutional neural networks.” In: Science China Physics,
Mechanics & Astronomy 64.9 (2021), p. 290311.

[Mac+22] I. MacCormack, C. Delaney, A. Galda, N. Aggarwal, and P. Narang. “Branch-
ing quantum convolutional neural networks.” In: Physical Review Research
4.1 (2022), p. 013117.

[Mat+22] A. Matic, M. Monnet, J. M. Lorenz, B. Schachtner, and T. Messerer. “Quantum-
classical convolutional neural networks in radiological image classifica-
tion.” In: 2022 IEEE International Conference on Quantum Computing and
Engineering (QCE). IEEE. 2022, pp. 56–66.

[McC+18] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven.
“Barren plateaus in quantum neural network training landscapes.” In:
Nature communications 9.1 (2018), p. 4812.

[Mit97] T. Mitchell. Machine Learning. McGraw Hill Education, 1997.

[NC00] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, 2000.

72

Bibliography

[NC02] M. A. Nielsen and I. Chuang. Quantum computation and quantum information.
2002.

[Pa19] A. Paszke and et al. “PyTorch: An imperative style, high-performance
deep learning library.” In: Advances in Neural Information Processing Systems.
Vol. 32. Curran Associates, Inc., 2019, pp. 8026–8037.

[Pes+21] A. Pesah, M. Cerezo, S. Wang, T. Volkoff, A. T. Sornborger, and P. J. Coles.
“Absence of barren plateaus in quantum convolutional neural networks.”
In: Physical Review X 11.4 (2021), p. 041011.

[Pre+19] L. M. Prevedello, S. S. Halabi, G. Shih, C. C. Wu, M. D. Kohli, F. H. Chokshi,
B. J. Erickson, J. Kalpathy-Cramer, K. P. Andriole, and A. E. Flanders.
“Challenges related to artificial intelligence research in medical imaging
and the importance of image analysis competitions.” In: Radiology: Artificial
Intelligence 1.1 (2019), e180031.

[Sch+20] M. Schuld, A. Bocharov, K. M. Svore, and N. Wiebe. “Circuit-centric quan-
tum classifiers.” In: Physical Review A 101.3 (2020), p. 032308.

[Sen+22] P. Sen, A. S. Bhatia, K. S. Bhangu, and A. Elbeltagi. “Variational quan-
tum classifiers through the lens of the Hessian.” In: Plos one 17.1 (2022),
e0262346.

[SII21] SIIT. How Logic Gates Work: OR, AND, XOR, NOR, NAND, XNOR, and NOT.
https://siit.co/blog/how-logic-gates-work-or-and-xor-nor-nand-
xnor-and-not/2918. 2021.

[SJA19] S. Sim, P. D. Johnson, and A. Aspuru-Guzik. “Expressibility and entangling
capability of parameterized quantum circuits for hybrid quantum-classical
algorithms.” In: Advanced Quantum Technologies 2.10 (Oct. 2019). doi: 10.
1002/qute.201900079.

[SK22a] D. Sarvamangala and R. V. Kulkarni. “Convolutional neural networks in
medical image understanding: a survey.” In: Evolutionary intelligence 15.1
(2022), pp. 1–22.

[SK22b] M. Schuld and N. Killoran. “Is quantum advantage the right goal for
quantum machine learning?” In: Prx Quantum 3.3 (2022), p. 030101.

[SSM21] M. Schuld, R. Sweke, and J. J. Meyer. “Effect of data encoding on the
expressive power of variational quantum-machine-learning models.” In:
Physical Review A 103.3 (2021), p. 032430.

[Sta23] Stanford University. CS230 Deep Learning. https://cs230.stanford.edu/.
2023.

73

https://siit.co/blog/how-logic-gates-work-or-and-xor-nor-nand-xnor-and-not/2918
https://siit.co/blog/how-logic-gates-work-or-and-xor-nor-nand-xnor-and-not/2918
https://doi.org/10.1002/qute.201900079
https://doi.org/10.1002/qute.201900079
https://cs230.stanford.edu/

Bibliography

[Tho] G. Thomas. Visualizing the loss landscape of neural nets. https://www.cs.umd.
edu/~tomg/projects/landscapes/.

[Tsi20] S. Tsimenidis. “Limitations of deep neural networks: A discussion of G.”
In: Marcus’ critical appraisal of deep learning. ArXiv (2020).

[Uni] D. L. University. Qiskit Hadamard Gate Tutorial.

[Wik21] Wikipedia. Controlled NOT gate — Wikipedia, The Free Encyclopedia. [Online;
accessed 24-March-2023]. 2021.

[Wu17] J. Wu. “Introduction to convolutional neural networks.” In: National Key Lab
for Novel Software Technology. Nanjing University. China 5.23 (2017), p. 495.

[Ya21] J. Yang and et al. “Medmnist v2: A large-scale lightweight benchmark
for 2D and 3D biomedical image classification.” In: CoRR (2021). arXiv:
2110.14795 [cs.CV].

[ZLZ21] Y. Zhang, J. Liang, and T. Zhang. “Embedding Principle of Loss Landscape
of Deep Neural Networks.” In: arXiv preprint arXiv:2105.14573 (2021).

[ZS19] Z. Zhang and E. Sejdić. “Radiological images and machine learning: trends,
perspectives, and prospects.” In: Computers in biology and medicine 108
(2019), pp. 354–370.

74

https://www.cs.umd.edu/~tomg/projects/landscapes/
https://www.cs.umd.edu/~tomg/projects/landscapes/
https://arxiv.org/abs/2110.14795

	Abstract
	Zusammenfassung
	Contents
	Introduction
	Introduction to deep learning in radiological imaging
	Machine learning and deep learning
	Convolutional Neural Networks
	High level overview
	Architecture and training
	Loss landscape and accuracy
	Convolution layer
	Pooling layer

	Application in radiological imaging

	Introduction to quantum computing
	Quantum bits
	Multiple qubits

	Quantum computation
	Single qubit gates
	Multiple qubit gates
	Common one-qubit and two-qubits gates

	NISQ devices
	Quantum Machine Learning
	Quantum Data Encoding
	Trainable variational circuits layer
	Quantum measurement
	Classical Optimization Loop
	The Effective Dimension: A Measure of Model Complexity

	Quantum classical convolutional neural networks: SOTA and motivation
	QCNN architecture
	QCCNN architecture

	QCCNNS with a quantum pooling layer
	Motivation
	Experimental Setup
	Dataset
	Pennylane

	Problem statement
	Pooling methods
	Mid circuit measurement
	Ancilla qubit and controlled gates
	Qubit selection with classical postprocessing
	Modular quantum pooling blocks

	Results and quantum metrics
	Classical CNN and QCCNN baseline
	Mid-circuit measurement
	Accuracy and loss
	Quantum weights
	Loss landscape
	Effective dimension

	Ancilla qubit and controlled gates
	Accuracy and loss
	Effective dimension

	Qubit selection with classical postprocessing
	Accuracy and loss
	Effective dimension

	Modular quantum pooling blocks
	Accuracy and loss
	Effective dimension

	Comparison of the best models
	Accuracy and loss
	Effective dimension

	Conclusion and further work
	List of Figures
	List of Tables
	Bibliography

